HI
Hirotaka Iwaki
Author with expertise in Pathophysiology of Parkinson's Disease
National Institute of Neurological Disorders and Stroke, National Institute on Aging, National Institutes of Health
+ 11 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(59% Open Access)
Cited by:
127
h-index:
24
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Virus exposure and neurodegenerative disease risk across national biobanks

Kristin Levine et al.Jan 22, 2023
+7
C
H
K
With recent findings connecting the Epstein-Barr virus to an increased risk of multiple sclerosis and growing concerns regarding the neurological impact of the coronavirus pandemic, we examined potential links between viral exposures and neurodegenerative disease risk. Using time series data from FinnGen for discovery and cross-sectional data from the UK Biobank for replication, we identified 45 viral exposures significantly associated with increased risk of neurodegenerative disease and replicated 22 of these associations. The largest effect association was between viral encephalitis exposure and Alzheimer's disease. Influenza with pneumonia was significantly associated with five of the six neurodegenerative diseases studied. We also replicated the Epstein-Barr/multiple sclerosis association. Some of these exposures were associated with an increased risk of neurodegeneration up to 15 years after infection. As vaccines are currently available for some of the associated viruses, vaccination may be a way to reduce some risk of neurodegenerative disease.
4
Paper
Citation116
5
Save
0

Genome-wide association study of Parkinson’s disease progression biomarkers in 12 longitudinal patients’ cohorts

Hirotaka Iwaki et al.May 7, 2020
+42
H
C
H
Abstract Background Several reports have identified different patterns of Parkinson’s disease progression in individuals carrying missense variants in the GBA or LRRK2 genes. The overall contribution of genetic factors to the severity and progression of Parkinson’s disease, however, has not been well studied. Objectives To test the association between genetic variants and the clinical features and progression of Parkinson’s disease on a genome-wide scale. Methods We accumulated individual data from 12 longitudinal cohorts in a total of 4,093 patients with 25,254 observations over a median of 3.81 years. Genome-wide associations were evaluated for 25 cross-sectional and longitudinal phenotypes. Specific variants of interest, including 90 recently-identified disease risk variants, were also investigated for the associations with these phenotypes. Results Two variants were genome-wide significant. Rs382940(T>A), within the intron of SLC44A1 , was associated with reaching Hoehn and Yahr stage 3 or higher faster (HR 2.04 [1.58, 2.62], P-value = 3.46E-8). Rs61863020(G>A), an intergenic variant and eQTL for ADRA2A , was associated with a lower prevalence of insomnia at baseline (OR 0.63 [0,52, 0.75], P-value = 4.74E-8). In the targeted analysis, we found nine associations between known Parkinson’s risk variants and more severe motor/cognitive symptoms. Also, we replicated previous reports of GBA coding variants (rs2230288: p.E365K, rs75548401: p.T408M) being associated with greater motor and cognitive decline over time, and APOE E4 tagging variant (rs429358) being associated with greater cognitive deficits in patients. Conclusions We identified novel genetic factors associated with heterogeneity of progression in Parkinson’s disease. The results provide new insights into the pathogenesis of Parkinson’s disease as well as patient stratification for clinical trials.
17

Multi-Modality Machine Learning Predicting Parkinson’s Disease

Mary Makarious et al.Oct 24, 2023
+24
D
H
M
SUMMARY Background Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multi-modal data is key moving forward. We build upon previous work to deliver multi-modal predictions of Parkinson’s Disease (PD). Methods We performed automated ML on multi-modal data from the Parkinson’s Progression Marker Initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson’s Disease Biomarker Program (PDBP) dataset. Finally, networks were built to identify gene communities specific to PD. Findings Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification, increased the diagnosis prediction accuracy (balanced accuracy) and other metrics. Combining data modalities outperforms the single biomarker paradigm. UPSIT was the largest contributing predictor for the classification of PD. The transcriptomic data was used to construct a network of disease-relevant transcripts. Interpretation We have built a model using an automated ML pipeline to make improved multi-omic predictions of PD. The model developed improves disease risk prediction, a critical step for better assessment of PD risk. We constructed gene expression networks for the next generation of genomics-derived interventions. Our automated ML approach allows complex predictive models to be reproducible and accessible to the community. Funding National Institute on Aging, National Institute of Neurological Disorders and Stroke, the Michael J. Fox Foundation, and the Global Parkinson’s Genetics Program. RESEARCH IN CONTEXT Evidence before this study Prior research into predictors of Parkinson’s disease (PD) has either used basic statistical methods to make predictions across data modalities, or they have focused on a single data type or biomarker model. We have done this using an open-source automated machine learning (ML) framework on extensive multi-modal data, which we believe yields robust and reproducible results. We consider this the first true multi-modality ML study of PD risk classification. Added value of this study We used a variety of linear, non-linear, kernel, neural networks, and ensemble ML algorithms to generate an accurate classification of both cases and controls in independent datasets using data that is not involved in PD diagnosis itself at study recruitment. The model built in this paper significantly improves upon our previous models that used the entire training dataset in previous work 1 . Building on this earlier work, we showed that the PD diagnosis can be refined using improved algorithmic classification tools that may yield potential biological insights. We have taken careful consideration to develop and validate this model using public controlled-access datasets and an open-source ML framework to allow for reproducible and transparent results. Implications of all available evidence Training, validating, and tuning a diagnostic algorithm for PD will allow us to augment clinical diagnoses or risk assessments with less need for complex and expensive exams. Going forward, these models can be built on remote or asynchronously collected data which may be important in a growing telemedicine paradigm. More refined diagnostics will also increase clinical trial efficiency by potentially refining phenotyping and predicting onset, allowing providers to identify potential cases earlier. Early detection could lead to improved treatment response and higher efficacy. Finally, as part of our workflow, we built new networks representing communities of genes correlated in PD cases in a hypothesis-free manner, showing how new and existing genes may be connected and highlighting therapeutic opportunities.
15

Identification and prediction of Parkinson’s disease subtypes and progression using machine learning in two cohorts

Anant Dadu et al.Oct 24, 2023
+16
R
V
A
Abstract Background The clinical manifestations of Parkinson’s disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. The emergence of machine learning to detect hidden patterns in complex, multi-dimensional datasets provides unparalleled opportunities to address this critical need. Methods and Findings We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson’s Disease Progression Marker Initiative (PPMI) (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson’s Disease Biomarker Program (PDBP) (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression five years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01 for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ± 0.02 for the fast progressing group (PDvec3). We identified serum neurofilament light (Nfl) as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent validation cohort, released the analytical code, and developed models in an open science manner. Conclusions Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes that might have been masked by cohort heterogeneity. We anticipate that machine learning models will improve patient counseling, clinical trial design, allocation of healthcare resources, and ultimately individualized patient care.
15
Paper
Citation2
0
Save
0

Increased CSF DOPA Decarboxylase Correlates with Lower DaT‐SPECT Binding: Analyses in Biopark and PPMI Cohorts

Shervin Khosousi et al.Sep 11, 2024
+6
E
A
S
Abstract Background Recent studies identified increased cerebrospinal fluid (CSF) DOPA decarboxylase (DDC) as a promising biomarker for parkinsonian disorders, suggesting a compensation to dying dopaminergic neurons. A correlation with 123I‐FP‐CIT‐SPECT (DaT‐SPECT) imaging could shed light on this link. Objective The objective is to assess the relationship between CSF DDC levels and DaT‐SPECT binding values. Methods A total of 51 and 72 Parkinson's disease (PD) subjects with available DaT‐SPECT and CSF DDC levels were selected from the PPMI and Biopark cohorts, respectively. DDC levels were analyzed using proximity extension assay and correlated with DaT‐SPECT striatal binding ratios (SBR). All analyses were corrected for age and sex. Results CSF DDC levels in PD patients correlated negatively with DaT‐SPECT SBR in both putamen and caudate nucleus. Additionally, SBR decreased with increased DDC levels over time in PD patients. Conclusion CSF DDC levels negatively correlate with DaT‐SPECT SBR in levodopa‐treated PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
0
Paper
Citation1
0
Save
1

Application of Aligned-UMAP to longitudinal biomedical studies

Anant Dadu et al.Oct 24, 2023
+13
R
V
A
Abstract Longitudinal multi-dimensional biological datasets are ubiquitous and highly abundant. These datasets are essential to understanding disease progression, identifying subtypes, and drug discovery. Discovering meaningful patterns or disease pathophysiologies in these datasets is challenging due to their high dimensionality, making it difficult to visualize hidden patterns. Several methods have been developed for dimensionality reduction, but they are limited to cross-sectional datasets. Recently proposed Aligned-UMAP, an extension of the UMAP algorithm, can visualize high-dimensional longitudinal datasets. In this work, we applied Aligned-UMAP on a broad spectrum of clinical, imaging, proteomics, and single-cell datasets. Aligned-UMAP reveals time-dependent hidden patterns when color-coded with the metadata. We found that the algorithm parameters also play a crucial role and must be tuned carefully to utilize the algorithm’s potential fully. Altogether, based on its ease of use and our evaluation of its performance on different modalities, we anticipate that Aligned-UMAP will be a valuable tool for the biomedical community. We also believe our benchmarking study becomes more important as more and more high-dimensional longitudinal data in biomedical research becomes available. Highlights - explored the utility of Aligned-UMAP in longitudinal biomedical datasets - offer insights on optimal uses for the technique - provide recommendations for best practices In Brief High-dimensional longitudinal data is prevalent yet understudied in biological literature. High-dimensional data analysis starts with projecting the data to low dimensions to visualize and understand the underlying data structure. Though few methods are available for visualizing high dimensional longitudinal data, they are not studied extensively in real-world biological datasets. A recently developed nonlinear dimensionality reduction technique, Aligned-UMAP, analyzes sequential data. Here, we give an overview of applications of Aligned-UMAP on various biomedical datasets. We further provide recommendations for best practices and offer insights on optimal uses for the technique.
0

Predicting Alzheimer's disease progression trajectory and clinical subtypes using machine learning

Vipul Satone et al.May 7, 2020
+10
A
R
V
Background Alzheimer’s disease (AD) is a common, age-related, neurodegenerative disease that impairs a person's ability to perform day to day activities. Diagnosing AD is difficult, especially in the early stages, many individuals go undiagnosed partly due to the complex heterogeneity in disease progression. This highlights a need for early prediction of the disease course to assist its treatment and tailor therapy options to the disease progression rate. Recent developments in machine learning techniques provide the potential to not only predict disease progression and trajectory of AD but also to classify the disease into different etiological subtypes. Methods and findings The suggested work clusters participants in distinct and multifaceted progression subgroups of AD and discusses an approach to predict the progression stage from baseline diagnosis. We observe that the myriad of clinically reported symptoms summarized in the proposed AD progression space corresponds directly to memory and cognitive measures, classically been used to monitor disease onset and progression. The proposed work concludes notably accurate prediction of disease progression after four years from the first 12 months of post-diagnosis clinical data (Area Under the Curve of 0.92 (95% confidence interval (CI), 0.90-0.94), 0.96 (95% CI, 0.92-1.0 ), 0.90 (95% CI, 0.86-0.94) and 0.83 (95% CI, 0.77-0.89) for controls, high, moderate and low progression rate patients respectively ). Further, we explore the long short-term memory (LSTM) neural networks to predict the trajectory of a patient’s progression. Conclusion The machine learning techniques presented in this study may assist providers with identifying different progression rates and trajectories in the early stages of disease progression, hence allowing for more efficient and unique care deliveries. With additional information about the progression rate of AD at hand, providers may further individualize the treatment plans. The predictive tests discussed in this study not only allow for early AD diagnosis but also facilitate the characterization of distinct AD subtypes relating to trajectories of disease progression. These findings are a crucial step forward to early disease detection. Additionally, models can be used to design improved clinical trials for AD research.
0

Penetrance of Parkinson’s disease in LRRK2 p.G2019S carriers is modified by a polygenic risk score

Hirotaka Iwaki et al.May 7, 2020
+8
M
C
H
Background While the LRRK2 p.G2019S mutation has been demonstrated to be a strong risk factor for Parkinson’s Disease (PD), factors that contribute to penetrance among carriers, other than aging, have not been well identified.Objectives To evaluate whether a cumulative genetic risk identified in the recent genome-wide study is associated with penetrance of PD among p.G2019S mutation carriers.Methods We included p.G2019S heterozygote carriers with European ancestry in three genetic cohorts in which the mutation carriers with and without PD were selectively recruited. We also included the carriers from two datasets: one from a case-control setting without selection of mutation carriers, and the other from a population sampling. The associations between PRS constructed from 89 variants reported in Nalls et al. and PD were tested and meta-analyzed. We also explored the interaction of age and PRS.Results After excluding 8 homozygotes, 833 p.G2019S heterozygote carriers (439 PD and 394 unaffected) were analyzed. PRS was associated with a higher penetrance of PD (OR 1.34, 95% C.I. [1.09, 1.64] per +1 SD, P = 0.005). In addition, associations with PRS and penetrance were stronger in the younger participants (main effect: OR 1.28 [1.04, 1.58] per +1 SD, P = 0.022; interaction effect: OR 0.78 [0.64, 0.94] per +1 SD and +10 years of age, P = 0.008).Conclusions Our results suggest that there is a genetic contribution for penetrance of PD among p.G2019S carriers. These results have important etiologic consequences and potential impact on the selection of subjects for clinical trials.
0

Parkinson disease age of onset GWAS: defining heritability, genetic loci and a-synuclein mechanisms

Cornelis Blauwendraat et al.May 7, 2020
+38
C
K
C
Increasing evidence supports an extensive and complex genetic contribution to Parkinson's disease (PD). Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age of onset are largely unknown. Here we performed an age of onset GWAS based on 28,568 PD cases. We estimated that the heritability of PD age of onset due to common genetic variation was ~0.11, lower than the overall heritability of risk for PD (~0.27) likely in part because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni corrected significant effect at other known PD risk loci, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. In addition, we identified that GBA coding variant carriers had an earlier age of onset compared to non-carriers. Notably, SNCA, TMEM175, SCARB2, BAG3 and GBA have all been shown to either directly influence alpha-synuclein aggregation or are implicated in alpha-synuclein aggregation pathways. Remarkably, other well-established PD risk loci such as GCH1, MAPT and RAB7L1/NUCKS1 (PARK16) did not show a significant effect on age of onset of PD. While for some loci, this may be a measure of power, this is clearly not the case for the MAPT locus; thus genetic variability at this locus influences whether but not when an individual develops disease. We believe this is an important mechanistic and therapeutic distinction. Furthermore, these data support a model in which alpha-synuclein and lysosomal mechanisms impact not only PD risk but also age of disease onset and highlights that therapies that target alpha-synuclein aggregation are more likely to be disease-modifying than therapies targeting other pathways.
31

Large-scale pathway-specific polygenic risk, transcriptomic community networks and functional inferences in Parkinson disease

Sara Bandrés‐Ciga et al.Oct 24, 2023
+23
J
S
S
ABSTRACT Polygenic inheritance plays a central role in Parkinson disease (PD). A priority in elucidating PD etiology lies in defining the biological basis of genetic risk. Unraveling how risk leads to disruption will yield disease-modifying therapeutic targets that may be effective. Here, we utilized a high-throughput and hypothesis-free approach to determine biological pathways underlying PD using the largest currently available cohorts of genetic data and gene expression data from International Parkinson’s Disease Genetics Consortium (IPDGC) and the Accelerating Medicines Partnership - Parkinson’s disease initiative (AMP-PD), among other sources. We placed these insights into a cellular context. We applied large-scale pathway-specific polygenic risk score (PRS) analyses to assess the role of common variation on PD risk in a cohort of 457,110 individuals by focusing on a compilation of 2,199 publicly annotated gene sets representative of curated pathways, of which we nominate 46 pathways associated with PD risk. We assessed the impact of rare variation on PD risk in an independent cohort of whole-genome sequencing data, including 4,331 individuals. We explored enrichment linked to expression cell specificity patterns using single-cell gene expression data and demonstrated a significant risk pattern for adult dopaminergic neurons, serotonergic neurons, and radial glia. Subsequently, we created a novel way of building de novo pathways by constructing a network expression community map using transcriptomic data derived from the blood of 1,612 PD patients, which revealed 54 connecting networks associated with PD. Our analyses highlight several promising pathways and genes for functional prioritization and provide a cellular context in which such work should be done.
31
0
Save
Load More