LH
Lukas Habegger
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(83% Open Access)
Cited by:
9,520
h-index:
49
/
i10-index:
86
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

Rui Chen et al.Mar 1, 2012
+38
J
G
R
Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity.
0
Citation1,222
0
Save
0

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes

Daniel MacArthur et al.Feb 16, 2012
+48
A
S
D
Defective Gene Detective Identifying genes that give rise to diseases is one of the major goals of sequencing human genomes. However, putative loss-of-function genes, which are often some of the first identified targets of genome and exome sequencing, have often turned out to be sequencing errors rather than true genetic variants. In order to identify the true scope of loss-of-function genes within the human genome, MacArthur et al. (p. 823 ; see the Perspective by Quintana-Murci ) extensively validated the genomes from the 1000 Genomes Project, as well as an additional European individual, and found that the average person has about 100 true loss-of-function alleles of which approximately 20 have two copies within an individual. Because many known disease-causing genes were identified in “normal” individuals, the process of clinical sequencing needs to reassess how to identify likely causative alleles.
0
Citation1,207
0
Save
0

The genomic complexity of primary human prostate cancer

Michael Berger et al.Feb 1, 2011
+38
F
M
M
Prostate cancer is the second most common cause of male cancer deaths in the United States. However, the full range of prostate cancer genomic alterations is incompletely characterized. Here we present the complete sequence of seven primary human prostate cancers and their paired normal counterparts. Several tumours contained complex chains of balanced (that is, 'copy-neutral') rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2-ERG, but inversely correlated with these regions in tumours lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumours contained rearrangements that disrupted CADM2, and four harboured events disrupting either PTEN (unbalanced events), a prostate tumour suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies and engage prostate tumorigenic mechanisms.
0
Citation1,193
0
Save
0

Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project

Mark Gerstein et al.Dec 23, 2010
+97
E
Z
M
We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.
0
Citation974
0
Save
0

Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease

Frederick Dewey et al.May 24, 2017
+55
R
A
F
Loss-of-function variants in the angiopoietin-like 3 gene (ANGPTL3) have been associated with decreased plasma levels of triglycerides, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol. It is not known whether such variants or therapeutic antagonism of ANGPTL3 are associated with a reduced risk of atherosclerotic cardiovascular disease.
0
Citation700
0
Save
10

Computationally efficient whole-genome regression for quantitative and binary traits

Joelle Mbatchou et al.May 20, 2021
+14
J
L
J
Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitative and binary phenotypes that is substantially faster than alternatives in multi-trait analyses while maintaining statistical efficiency. The method naturally accommodates parallel analysis of multiple phenotypes and requires only local segments of the genotype matrix to be loaded in memory, in contrast to existing alternatives, which must load genome-wide matrices into memory. This results in substantial savings in compute time and memory usage. We introduce a fast, approximate Firth logistic regression test for unbalanced case-control phenotypes. The method is ideally suited to take advantage of distributed computing frameworks. We demonstrate the accuracy and computational benefits of this approach using the UK Biobank dataset with up to 407,746 individuals.
10
Citation671
0
Save
0

Assessment of transcript reconstruction methods for RNA-seq

Tyler Alioto et al.Nov 3, 2013
+50
P
J
T
We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.
0
Citation669
0
Save
0

Variation in Transcription Factor Binding Among Humans

Maya Kasowski et al.Mar 19, 2010
+14
C
F
M
Like Father, Like Mother, Like Child Transcriptional regulation is mediated by chromatin structure, which may affect the binding of transcription factors, but the extent of how individual-to-individual genetic variation affects such regulation is not well understood. Kasowski et al. (p. 232 , published online 18 March) investigated the binding of two transcription factors across the genomes of human individuals and one chimpanzee. Transcription factor binding was associated with genomic features such as nucleotide variation, insertions and deletions, and copy number variation. Thus, genomic sequence variation affects transcription factor binding and may explain expression difference among individuals. McDaniell et al. (p. 235 , published online 18 March) provide a genome-wide catalog of variation in chromatin and transcription factor binding in two parent-child trios of European and African ancestry. Up to 10% of active chromatin binding sites were specific to a set of individuals and were often inherited. Furthermore, variation in active chromatin sites showed heritable allele-specific correlation with variation in gene expression.
0
Citation567
0
Save
0

Exome sequencing and analysis of 454,787 UK Biobank participants

Joshua Backman et al.Oct 18, 2021
+38
A
A
J
A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study2. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P ≤ 2.18 × 10-11. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene-trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.
0
Citation532
0
Save
0

Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study

Alanna Morrison et al.Dec 22, 2016
+51
J
M
A
Unleashing the power of precision medicine Precision medicine promises the ability to identify risks and treat patients on the basis of pathogenic genetic variation. Two studies combined exome sequencing results for over 50,000 people with their electronic health records. Dewey et al. found that ∼3.5% of individuals in their cohort had clinically actionable genetic variants. Many of these variants affected blood lipid levels that could influence cardiovascular health. Abul-Husn et al. extended these findings to investigate the genetics and treatment of familial hypercholesterolemia, a risk factor for cardiovascular disease, within their patient pool. Genetic screening helped identify at-risk patients who could benefit from increased treatment. Science , this issue p. 10.1126/science.aaf6814 , p. 10.1126/science.aaf7000
0
Citation528
0
Save
Load More