CI
C.A.G. Ittner
Author with expertise in Coronavirus Disease 2019
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
2,717
h-index:
19
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
10

CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer

Erin Bange et al.May 20, 2021
Patients with cancer have high mortality from coronavirus disease 2019 (COVID-19), and the immune parameters that dictate clinical outcomes remain unknown. In a cohort of 100 patients with cancer who were hospitalized for COVID-19, patients with hematologic cancer had higher mortality relative to patients with solid cancer. In two additional cohorts, flow cytometric and serologic analyses demonstrated that patients with solid cancer and patients without cancer had a similar immune phenotype during acute COVID-19, whereas patients with hematologic cancer had impairment of B cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses. Despite the impaired humoral immunity and high mortality in patients with hematologic cancer who also have COVID-19, those with a greater number of CD8 T cells had improved survival, including those treated with anti-CD20 therapy. Furthermore, 77% of patients with hematologic cancer had detectable SARS-CoV-2-specific T cell responses. Thus, CD8 T cells might influence recovery from COVID-19 when humoral immunity is deficient. These observations suggest that CD8 T cell responses to vaccination might provide protection in patients with hematologic cancer even in the setting of limited humoral responses. A study of hospitalized patients infected with SARS-CoV-2 and who have liquid or solid cancer suggests that hematologic malignancy is an independent risk factor for mortality and that CD8+ T cells might limit infection in this setting irrespective of humoral immunity.
10
Citation423
0
Save
1

Sepsis-associated acute respiratory distress syndrome in individuals of European ancestry: a genome-wide association study

Beatriz Guillén‐Guío et al.Mar 1, 2020
Acute respiratory distress syndrome (ARDS) is a lung inflammatory process caused mainly by sepsis. Most previous studies that identified genetic risks for ARDS focused on candidates with biological relevance. We aimed to identify novel genetic variants associated with ARDS susceptibility and to provide complementary functional evidence of their effect in gene regulation.We did a case-control genome-wide association study (GWAS) of 1935 European individuals, using patients with sepsis-associated ARDS as cases and patients with sepsis without ARDS as controls. The discovery stage included 672 patients admitted into a network of Spanish intensive care units between January, 2002, and January, 2017. The replication stage comprised 1345 individuals from two independent datasets from the MESSI cohort study (Sep 22, 2008-Nov 30, 2017; USA) and the VISEP (April 1, 2003-June 30, 2005) and MAXSEP (Oct 1, 2007-March 31, 2010) trials of the SepNet study (Germany). Results from discovery and replication stages were meta-analysed to identify association signals. We then used RNA sequencing data from lung biopsies, in-silico analyses, and luciferase reporter assays to assess the functionallity of associated variants.We identified a novel genome-wide significant association with sepsis-associated ARDS susceptibility (rs9508032, odds ratio [OR] 0·61, 95% CI 0·41-0·91, p=5·18 × 10-8) located within the Fms-related tyrosine kinase 1 (FLT1) gene, which encodes vascular endothelial growth factor receptor 1 (VEGFR-1). The region containing the sentinel variant and its best proxies acted as a silencer for the FLT1 promoter, and alleles with protective effects in ARDS further reduced promoter activity (p=0·0047). A literature mining of all previously described ARDS genes validated the association of vascular endothelial growth factor A (VEGFA; OR 0·55, 95% CI 0·41-0·73; p=4·69 × 10-5).A common variant within the FLT1 gene is associated with sepsis-associated ARDS. Our findings support a role for the vascular endothelial growth factor signalling pathway in ARDS pathogenesis and identify VEGFR-1 as a potential therapeutic target.Instituto de Salud Carlos III, European Regional Development Funds, Instituto Tecnológico y de Energías Renovables.
1
Citation40
0
Save
76

Signaling through FcγRIIA and the C5a-C5aR pathway mediates platelet hyperactivation in COVID-19

Sokratis Apostolidis et al.May 3, 2021
Abstract Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibit higher basal levels of activation measured by P-selectin surface expression, and have a poor functional reserve upon in vitro stimulation. Correlating clinical features to the ability of plasma from COVID-19 patients to stimulate control platelets identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions, thus identifying these potentially actionable pathways as central for platelet activation and/or vascular complications in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect. These studies have implications for the role of platelet hyperactivation in complications associated with SARS-CoV-2 infection. Cover illustration One-sentence summary The FcγRIIA and C5a-C5aR pathways mediate platelet hyperactivation in COVID-19
76
Citation11
0
Save
0

Cytometry Masked Autoencoder: An Accurate and Interpretable Automated Immunophenotyper

Jae‐Sik Kim et al.Feb 14, 2024
Abstract High-throughput single-cell cytometry data are crucial for understanding involvement of immune system in diseases and responses to treatment. Traditional methods for annotating cytometry data, specifically manual gating and clustering, face challenges in scalability, robustness, and accuracy. In this study, we propose a cytometry masked autoencoder (cyMAE), which offers an automated solution for immunophenotyping tasks including cell type annotation. The cyMAE model is designed to uphold user-defined cell type definitions, thereby facilitating easier interpretation and cross-study comparisons. The cyMAE model operates on a pre-train and fine-tune approach. In the pre-training phase, cyMAE employs Masked Cytometry Modelling (MCM) to learn relationships between protein markers in immune cells solely based on protein expression, without relying on prior information such as cell identity and cell type-specific marker proteins. Subsequently, the pre-trained cyMAE is fine-tuned on multiple specialized tasks via task-specific supervised learning. The pre-trained cyMAE addresses the shortcomings of manual gating and clustering methods by providing accurate and interpretable predictions. Through validation across multiple cohorts, we demonstrate that cyMAE effectively identifies co-occurrence patterns of bound labeled antibodies, delivers accurate and interpretable cellular immunophenotyping, and improves the prediction of subject metadata status. Specifically, we evaluated cyMAE for cell type annotation and imputation at the cellular-level and SARS-CoV-2 infection prediction, secondary immune response prediction against COVID-19, and prediction of the infection stage in COVID-19 progression at the subject-level. The introduction of cyMAE marks a significant step forward in immunology research, particularly in large-scale and high-throughput human immune profiling. This approach offers new possibilities for predicting and interpreting cellular-level and subject-level phenotypes in both health and disease.