BW
Ben Woodcroft
Author with expertise in RNA Sequencing Data Analysis
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
26

Recoding enhances the metabolic capabilities of two novel methylotrophic Asgardarchaeota lineages

Jiarui Sun et al.Feb 19, 2021
Abstract Asgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative organoheterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including deep subsurface, shallow lake, and geothermal spring sediments. Phylogenomic inferences followed by taxonomic rank normalisation confirmed previously established Asgardarchaeota classes and revealed four novel lineages, two of which were consistently recovered as monophyletic classes. We therefore propose the names Candidatus Hodarchaeia class nov. and Cand. Jordarchaeia class nov., derived from the gods Hod and Jord in Norse mythology. Metabolic inference suggests that both novel classes represent methylotrophic acetogens, encoding the transfer of methyl groups, such as methylated amines, to coenzyme M with acetate as the end product in remnants of a methanogen-derived core metabolism. This inferred mode of energy conservation is predicted to be enhanced by genetic code expansions, i.e. recoding, allowing the incorporation of the rare 21st and 22nd amino acids selenocysteine (Sec) and pyrrolysine (Pyl). We found Sec recoding in Jordarchaeia and all other Asgardarchaeota classes, which likely benefit from increased catalytic activities of Sec-containing enzymes. Pyl recoding on the other hand is restricted to Hodarchaeia in the Asgardarchaeota, making it the first reported non-methanogenic lineage with an inferred complete Pyl machinery, likely providing this class with an efficient mechanism for methylamine utilisation. Furthermore, we identified enzymes for the biosynthesis of ester-type lipids, characteristic of Bacteria and Eukaryotes, in both novel classes, supporting the hypothesis that mixed ether-ester lipids are a shared feature among Asgardarchaeota.
26
Citation1
0
Save
0

Sequenceserver: a modern graphical user interface for custom BLAST databases

Anurag Priyam et al.Nov 27, 2015
The dramatic drop in DNA sequencing costs has created many opportunities for novel biological research. These opportunities largely rest upon the ability to effectively compare newly obtained and previously known sequences. This is commonly done with BLAST, yet using BLAST directly on new datasets requires substantial technical skills or helpful colleagues. Furthermore, graphical interfaces for BLAST are challenging to install and largely mimic underlying computational processes rather than work patterns of researchers. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver (http://sequenceserver.com), a modern graphical user interface for BLAST. Sequenceserver substantially increases the efficiency of researchers working with sequence data. This is due first to innovations at three levels. First, our software can be installed and used on custom datasets extremely rapidly for personal and shared applications. Second, based on analysis of user input and simple algorithms, Sequenceserver reduces the amount of decisions the user must make, provides interactive visual feedback, and prevents common potential errors that would otherwise cause erroneous results. Finally, Sequenceserver provides multiple highly visual and text-based output options that mirror the requirements and work patterns of researchers. Together, these features greatly facilitate BLAST analysis and interpretation and thus substantially enhance researcher productivity.
0

Soil viruses are underexplored players in ecosystem carbon processing

Gareth Trubl et al.Jun 15, 2018
Rapidly thawing permafrost harbors ~30-50% of global soil carbon, and the fate of this carbon remains unknown. Microorganisms will play a central role in its fate, and their viruses could modulate that impact via induced mortality and metabolic controls. Because of the challenges of recovering viruses from soils, little is known about soil viruses or their role(s) in microbial biogeochemical cycling. Here, we describe 53 viral populations (vOTUs) recovered from seven quantitatively-derived (i.e. not multiple-displacement-amplified) viral-particle metagenomes (viromes) along a permafrost thaw gradient. Only 15% of these vOTUs had genetic similarity to publicly available viruses in the RefSeq database, and ~30% of the genes could be annotated, supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity. The vOTUs exhibited distinct ecology, with dramatically different distributions along the thaw gradient habitats, and a shift from soil-virus-like assemblages in the dry palsas to aquatic-virus-like in the inundated fen. Seventeen vOTUs were linked to microbial hosts (in silico), implicating viruses in infecting abundant microbial lineages from Acidobacteria, Verrucomicrobia, and Deltaproteoacteria, including those encoding key biogeochemical functions such as organic matter degradation. Thirty-one auxiliary metabolic genes (AMGs) were identified, and suggested viral-mediated modulation of central carbon metabolism, soil organic matter degradation, polysaccharide-binding, and regulation of sporulation. Together these findings suggest that these soil viruses have distinct ecology, impact host-mediated biogeochemistry, and likely impact ecosystem function in the rapidly changing Arctic.
0

Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi

Joel Boyd et al.Aug 13, 2018
The methyl-coenzyme M reductase (MCR) complex is a key enzyme in archaeal methane generation and has recently been proposed to also be involved in the oxidation of short-chain hydrocarbons including methane, butane and potentially propane. The number of archaeal clades encoding the MCR complex continues to grow, suggesting that this complex was inherited from an ancient ancestor, or has undergone extensive horizontal gene transfer. Expanding the representation of MCR-encoding lineages through metagenomic approaches will help resolve the evolutionary history of this complex. Here, a near-complete Archaeoglobi metagenome-assembled genome (MAG; rG16) was recovered from the deep subseafloor along the Juan de Fuca Ridge flank that encodes two divergent McrABG operons similar to those found in Candidatus Bathyarchaeota and Candidatus Syntrophoarchaeum MAGs. rG16 is basal to members of the class Archaeoglobi, and encodes the genes for β-oxidation, potentially allowing an alkanotrophic metabolism similar to that proposed for Ca. Syntrophoarchaeum. rG16 also encodes a respiratory electron transport chain that can potentially utilize nitrate, iron, and sulfur compounds as electron acceptors. As the first Archaeoglobi with the MCR complex, rG16 extends our understanding of the evolution and distribution of novel MCR encoding lineages among the Archaea.