AD
Ann Dauphin
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
1,015
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant

Leonid Yurkovetskiy et al.Sep 15, 2020
+19
K
H
L
The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide, reaching near fixation in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and on cells rendered permissive by ectopic expression of human ACE2 or of ACE2 orthologs from various mammals, including Chinese rufous horseshoe bat and Malayan pangolin. D614G did not alter S protein synthesis, processing, or incorporation into SARS-CoV-2 particles, but D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts an interprotomer contact and that the conformation is shifted toward an ACE2 binding-competent state, which is modeled to be on pathway for virion membrane fusion with target cells. Consistent with this more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated.
0

Primate immunodeficiency virus Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex

Leonid Yurkovetskiy et al.Apr 3, 2018
+5
K
M
L
Drugs that inhibit HIV-1 replication and prevent progression to AIDS do not eliminate HIV-1 proviruses from the chromosomes of long-lived CD4+ memory T cells. To escape eradication by these antiviral drugs, or by the host immune system, HIV-1 exploits poorly defined host factors that silence provirus transcription. These same factors, though, must be overcome by all retroviruses, including HIV-1 and other primate immunodeficiency viruses, in order to activate provirus transcription and produce new virus. Here we show that Vpx and Vpr, proteins from a wide range of primate immunodeficiency viruses, activate provirus transcription in human CD4+ T cells. Provirus activation required the DCAF1 adaptor that links Vpx and Vpr to the CUL4A/B ubiquitin ligase complex, but did not require degradation of SAMHD1, a well-characterized target of Vpx and Vpr. A loss-of-function screen for transcription silencing factors that mimic the effect of Vpx on provirus silencing identified all components of the Human Silencing Hub (HUSH) complex, FAM208A (TASOR/RAP140), MPHOSPH8 (MPP8), PPHLN1 (PERIPHILIN), and MORC2. Vpx associated with the HUSH complex components and decreased steady-state levels of these proteins in a DCAF-dependent manner. Finally, vpx and FAM208A knockdown accelerated HIV-1 and SIVMAC replication kinetics in CD4+ T cells to a similar extent, and HIV-2 replication required either vpx or FAM208A disruption. These results demonstrate that the HUSH complex restricts transcription of primate immunodeficiency viruses and thereby contributes to provirus latency. To counteract this restriction and activate provirus expression, primate immunodeficiency viruses encode Vpx and Vpr proteins that degrade HUSH complex components.
0

Intron-containing RNA from the HIV-1 provirus activates type I interferon and inflammatory cytokines

Sean McCauley et al.Aug 7, 2017
+4
A
K
S
HIV-1-infected people who take drugs that suppress viremia to undetectable levels are protected from developing AIDS. Nonetheless, these individuals have chronic inflammation associated with heightened risk of cardiovascular pathology. HIV-1 establishes proviruses in long-lived CD4+ memory T cells, and perhaps other cell types, that preclude elimination of the virus even after years of continuous antiviral therapy. Though the majority of proviruses that persist during antiviral therapy are defective for production of infectious virions, many are expressed, raising the possibility that the HIV-1 provirus or its transcripts contribute to ongoing inflammation. Here we found that the HIV-1 provirus activated innate immune signaling in isolated dendritic cells, macrophages, and CD4+ T cells. Immune activation required transcription from the HIV-1 provirus and expression of CRM1-dependent, Rev-dependent, RRE-containing, unspliced HIV-1 RNA. If rev was provided in trans, all HIV-1 coding sequences were dispensable for activation except those cis-acting sequences required for replication or splicing. These results indicate that the complex, post-transcriptional regulation intrinsic to HIV-1 RNA is detected by the innate immune system as a danger signal, and that drugs which disrupt HIV-1 transcription or HIV-1 RNA metabolism would add qualitative benefit to current antiviral drug regimens.
0

Constrained mutational sampling of amino acids in HIV-1 protease evolution

Jeffrey Boucher et al.Jun 23, 2018
+7
A
T
J
The evolution of HIV-1 protein sequences should be governed by a combination of factors including nucleotide mutational probabilities, the genetic code, and fitness. The impact of these factors on protein sequence evolution are interdependent, making it challenging to infer the individual contribution of each factor from phylogenetic analyses alone. We investigated the protein sequence evolution of HIV-1 by determining an experimental fitness landscape of all individual amino acid changes in protease. We compared our experimental results to the frequency of protease variants in a publicly available dataset of 32,163 sequenced isolates from drug-naive individuals. The most common amino acids in sequenced isolates supported robust experimental fitness, indicating that the experimental fitness landscape captured key features of selection acting on protease during viral infections of hosts. Amino acid changes requiring multiple mutations from the likely ancestor were slightly less likely to support robust experimental fitness than single mutations, consistent with the genetic code favoring chemically conservative amino acid changes. Amino acids that were common in sequenced isolates were predominantly accessible by single mutations from the likely protease ancestor. Multiple mutations commonly observed in isolates were accessible by mutational walks with highly fit single mutation intermediates. Our results indicate that the prevalence of multiple base mutations in HIV-1 protease is strongly influenced by mutational sampling.
227

Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant

Leonid Yurkovetskiy et al.Jul 4, 2020
+20
X
S
L
SUMMARY The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and cells rendered permissive by ectopic expression of various mammalian ACE2 orthologs. Nonetheless, D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts a critical interprotomer contact and that this dramatically shifts the S protein trimer conformation toward an ACE2-binding and fusion-competent state. Consistent with the more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated. These results indicate that D614G adopts conformations that make virion membrane fusion with the target cell membrane more probable but that D614G retains susceptibility to therapies that disrupt interaction of the SARS-CoV-2 S protein with the ACE2 receptor.
1

S:D614G and S:H655Y are gateway mutations that act epistatically to promote SARS-CoV-2 variant fitness

Leonid Yurkovetskiy et al.Mar 31, 2023
+11
C
S
L
SARS-CoV-2 variants bearing complex combinations of mutations that confer increased transmissibility, COVID-19 severity, and immune escape, were first detected after S:D614G had gone to fixation, and likely originated during persistent infection of immunocompromised hosts. To test the hypothesis that S:D614G facilitated emergence of such variants, S:D614G was reverted to the ancestral sequence in the context of sequential Spike sequences from an immunocompromised individual, and within each of the major SARS-CoV-2 variants of concern. In all cases, infectivity of the S:D614G revertants was severely compromised. The infectivity of atypical SARS-CoV-2 lineages that propagated in the absence of S:D614G was found to be dependent upon either S:Q613H or S:H655Y. Notably, Gamma and Omicron variants possess both S:D614G and S:H655Y, each of which contributed to infectivity of these variants. Among sarbecoviruses, S:Q613H, S:D614G, and S:H655Y are only detected in SARS-CoV-2, which is also distinguished by a polybasic S1/S2 cleavage site. Genetic and biochemical experiments here showed that S:Q613H, S:D614G, and S:H655Y each stabilize Spike on virions, and that they are dispensable in the absence of S1/S2 cleavage, consistent with selection of these mutations by the S1/S2 cleavage site. CryoEM revealed that either S:D614G or S:H655Y shift the Spike receptor binding domain (RBD) towards the open conformation required for ACE2-binding and therefore on pathway for infection. Consistent with this, an smFRET reporter for RBD conformation showed that both S:D614G and S:H655Y spontaneously adopt the conformation that ACE2 induces in the parental Spike. Data from these orthogonal experiments demonstrate that S:D614G and S:H655Y are convergent adaptations to the polybasic S1/S2 cleavage site which stabilize S1 on the virion in the open RBD conformation and act epistatically to promote the fitness of variants bearing complex combinations of clinically significant mutations.
5

Deep generative models predict SARS-CoV-2 Spike infectivity and foreshadow neutralizing antibody escape

Noor Youssef et al.Oct 10, 2023
+21
F
S
N
Abstract Recurrent waves of SARS-CoV-2 infection, driven by the periodic emergence of new viral variants, highlight the need for vaccines and therapeutics that remain effective against future strains. Yet, our ability to proactively evaluate such therapeutics is limited to assessing their effectiveness against previous or circulating variants, which may differ significantly in their antibody escape from future viral evolution. To address this challenge, we developed deep learning methods to predict the effect of mutations on fitness and escape from neutralizing antibodies and used this information to engineer a set of 68 unique SARS-CoV-2 Spike proteins. The designed constructs, which incorporated novel combinations of up to 46 mutations relative to the ancestral strain, were infectious and evaded neutralization by nine well-characterized panels of human polyclonal anti-SARS-CoV-2 immune sera. Designed constructs on previous SARS-CoV-2 strains anticipated the antibody neutralization escape of variants seen subsequently during the COVID-19 pandemic. We demonstrate that designed Spike constructs using data available at the time of the implementation of the 2022 bivalent mRNA booster vaccine foretold the level of neutralizing antibody escape observed in the most recently emerging variants. Our approach provides extensive datasets of antigenically diverse escape variants to evaluate the protective ability of vaccines and therapeutics to inhibit future variants. This approach is generalizable to other viral pathogens.
0

Cyclophilin A protects HIV-1 from restriction by human TRIM5α

Kyusik Kim et al.Mar 25, 2019
+8
S
A
K
The capsid (CA) protein lattice of HIV-1 and other retroviruses encases viral genomic RNA and regulates steps that are essential to retroviral invasion of target cells, including reverse transcription, nuclear trafficking, and integration of viral cDNA into host chromosomal DNA[1][1]. Cyclophilin A (CypA), the first cellular protein reported to bind HIV-1 CA[2][2], has interacted with invading lentiviruses related to HIV-1 for millions of years[3][3]–[7][4]. Disruption of the CA-CypA interaction decreases HIV-1 infectivity in human cells[8][5]–[12][6], but stimulates infectivity in non-human primate cells[13][7]–[15][8]. Genetic and biochemical data suggest that CypA interaction with CA protects HIV-1 from a restriction factor in human cells[16][9]–[20][10]. Discovery of the CA-specific restriction factor TRIM5α[21][11], and of TRIM5-CypA fusion genes that were independently generated at least four times in phylogeny[4][12],[5][13],[15][8],[22][14]–[25][15], pointed to human TRIM5α as the CypA-sensitive restriction factor. However, significant HIV-1 restriction by human TRIM5α[21][11], let alone inhibition of such activity by CypA[26][16], has not been detected. Here, exploiting reverse genetic tools optimized for primary human CD4+ T cells, macrophages, and dendritic cells, we demonstrate that disruption of the CA-CypA interaction renders HIV-1 susceptible to restriction by human TRIM5α, with the block occurring before reverse transcription. Identical findings were obtained with single-cycle vectors or with replication-competent HIV-1, including sexually-transmitted clones from sub-Saharan Africa. Endogenous TRIM5α was observed to associate with virion cores as they entered the macrophage cytoplasm, but only when the CA-CypA interaction was disrupted. These experiments resolve the long-standing mystery of the role of CypA in HIV-1 replication by demonstrating that this ubiquitous cellular protein shields HIV-1 from previously inapparent, but potent inhibition, imposed by human TRIM5α. Hopefully this reinvigorates development of CypA-inhibitors for treatment of HIV-1 and other CypA-dependent pathogens[27][17]–[30][18]. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-7 [5]: #ref-8 [6]: #ref-12 [7]: #ref-13 [8]: #ref-15 [9]: #ref-16 [10]: #ref-20 [11]: #ref-21 [12]: #ref-4 [13]: #ref-5 [14]: #ref-22 [15]: #ref-25 [16]: #ref-26 [17]: #ref-27 [18]: #ref-30