YW
Yu-Hsin Wan
Author with expertise in Coronavirus Disease 2019 Research
Fred Hutch Cancer Center, Cancer Research Center, Infectious Disease Research Institute
+ 1 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
10
h-index:
9
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit

Nicholas Hurlburt et al.Oct 24, 2023
+11
I
L
N
Abstract Three highly pathogenic betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks are likely to occur. Evidence suggests that neutralizing antibodies are important for protection against infection with CoVs. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-coronavirus protection. To this end, we previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 fusion machinery, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and displays cross reactive binding to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is also maintained against the Alpha, Delta and Gamma variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region on sarbecovirus spikes. A 1.74Å crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs. Thus, CV3-25 defines a novel site of sarbecovirus vulnerability that will inform pan-CoV vaccine development.
19
Paper
Citation9
0
Save
84

Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge

Harman Malhi et al.Oct 24, 2023
+17
Y
L
H
Summary/Abstract Epstein-Barr virus (EBV) is a cancer-associated pathogen responsible for 140,000 deaths per year. EBV is also the etiological agent of infectious mononucleosis and is associated with multiple sclerosis and rheumatoid arthritis. Thus, an EBV vaccine could alleviate significant morbidity and mortality. EBV is orally transmitted and has tropism for both epithelial cells and B cells which are present in the oral cavity. Therefore, a prophylactic vaccine would need to prevent infection of both cell types. Passive transfer neutralizing monoclonal antibodies targeting the viral gH/gL glycoprotein complex prevent experimental EBV infection in humanized mice and rhesus macaques, suggesting that gH/gL is an attractive vaccine candidate. Here, we produced and evaluated the immunogenicity of several nanoparticle immunogens displaying gH/gL with distinct valencies and geometries. After one or two immunizations, all nanoparticles elicited superior binding and neutralizing titers relative to monomeric gH/gL. Antibodies elicited by a computationally designed self-assembling nanoparticle that displays 60 copies of the gH/gL protein conferred protection against a lethal dose of EBV in a humanized mouse challenge model, whereas antibodies elicited by monomeric gH/gL did not. Taken together, these data motivate further development of gH/gL nanoparticle vaccine candidates for EBV.
84
Citation1
0
Save
0

Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual

Emilie Seydoux et al.Dec 1, 2020
+16
A
L
E
B cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages. Only two antibodies displayed neutralizing activity against SARS-CoV-2 pseudo-virus. The most potent antibody bound the RBD in a manner that prevented binding to the ACE2 receptor, while the other bound outside the RBD. Our study indicates that the majority of antibodies against the viral envelope spike that were generated during the first weeks of COVID-19 infection are non-neutralizing and target epitopes outside the RBD. Antibodies that disrupt the SARS-CoV-2 spike-ACE2 interaction can potently neutralize the virus without undergoing extensive maturation. Such antibodies have potential preventive/therapeutic potential and can serve as templates for vaccine-design.
10

Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation

Nicholas Hurlburt et al.Oct 13, 2023
+4
A
Y
N
Abstract SARS-CoV-2 is a betacoronavirus virus responsible for the COVID-19 pandemic. Here, we determined the X-ray crystal structure of a potent neutralizing monoclonal antibody, CV30, isolated from a patient infected with SARS-CoV-2, in complex with the receptor binding domain (RBD). The structure reveals CV30’s epitope overlaps with the human ACE2 receptor binding site thus providing the structural basis for its neutralization by preventing ACE2 binding.
1

Designed proteins assemble antibodies into modular nanocages

Robby Divine et al.Oct 24, 2023
+27
G
H
R
Antibodies are widely used in biology and medicine, and there has been considerable interest in multivalent antibody formats to increase binding avidity and enhance signaling pathway agonism. However, there are currently no general approaches for forming precisely oriented antibody assemblies with controlled valency. We describe the computational design of two-component nanocages that overcome this limitation by uniting form and function. One structural component is any antibody or Fc fusion and the second is a designed Fc-binding homo-oligomer that drives nanocage assembly. Structures of 8 antibody nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage match the corresponding computational models. Antibody nanocages targeting cell-surface receptors enhance signaling compared to free antibodies or Fc-fusions in DR5-mediated apoptosis, Tie2-mediated angiogenesis, CD40 activation, and T cell proliferation; nanocage assembly also increases SARS-CoV-2 pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-ACE2 fusion proteins. We anticipate that the ability to assemble arbitrary antibodies without need for covalent modification into highly ordered assemblies with different geometries and valencies will have broad impact in biology and medicine.