OS
Olivia Swann
Author with expertise in Epidemiology and Pathogenesis of Respiratory Viral Infections
Imperial College London, The London College
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
26
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
27

Resistance of endothelial cells to SARS-CoV-2 infection in vitro

Blerina Ahmetaj‐Shala et al.Oct 24, 2023
+4
L
T
B
Abstract Rationale The secondary thrombotic/vascular clinical syndrome of COVID-19 suggests that SARS-CoV-2 infects not only respiratory epithelium but also the endothelium activating thrombotic pathways, disrupting barrier function and allowing access of the virus to other organs of the body. However, a direct test of susceptibility to SARS-CoV-2 of authentic endothelial cell lines has not been performed. Objective To determine infectibility of primary endothelial cell lines with live SARS-CoV-2 and pseudoviruses expressing SARS-CoV-2 spike protein. Methods and Results Expression of ACE2 and BSG pathways genes was determined in three types of endothelial cells; blood outgrowth, lung microvascular and aortic endothelial cells. For comparison nasal epithelial cells, Vero E6 cells (primate kidney fibroblast cell line) and HEK 293T cells (human embryonic kidney cells) transfected with either ACE2 or BSG were used as controls. Endothelial and Vero E6 cells were treated with live SARS-CoV-2 virus for 1 hour and imaged at 24 and 72 hours post infection. Pseudoviruses containing SARS-CoV-2, Ebola and Vesicular Stomatis Virus glycoproteins were generated and added to endothelial cells and HEK 239Ts for 2 hours and infection measured using luminescence at 48 hours post infection. Compared to nasal epithelial cells, endothelial cells expressed low or undetectable levels of ACE2 and TMPRSS2 but comparable levels of BSG, PPIA and PPIB. Endothelial cells showed no susceptibility to live SARS-CoV-2 or SARS-CoV-2 pseudovirus (but showed susceptibility to Ebola and Vesicular Stomatitis Virus). Overexpression of ACE2 but not BSG in HEK 239T cells conferred SARS-CoV-2 pseudovirus entry. Endothelial cells primed with IL-1ß remained resistant to SARS-CoV-2. Conclusion Endothelial cells are resistant to infection with SARS-CoV-2 virus, in line with relatively low levels of ACE2 and TMPRSS2, suggesting that the vascular dysfunction and thrombosis seen in severe COVID-19 is a result of factors released by adjacent infected cells (e.g. epithelial cells) and/or circulating, systemic inflammatory mediators.
27
Citation19
0
Save
1

Mammalian ANP32A and ANP32B proteins drive alternative avian influenza virus polymerase adaptations

Thomas Peacock et al.Oct 24, 2023
+5
E
C
T
Abstract ANP32 proteins, which act as influenza polymerase co-factors, vary between birds and mammals. The well-known mammalian adaptation, PB2-E627K, enables influenza polymerase to use mammalian ANP32 proteins. However, some mammalian-adapted influenza viruses do not harbour this adaptation. Here, we show that alternative PB2 adaptations, Q591R and D701N also allow influenza polymerase to use mammalian ANP32 proteins. PB2-E627K strongly favours use of mammalian ANP32B proteins, whereas D701N shows no such bias. Accordingly, PB2-E627K adaptation emerges in species with strong pro-viral ANP32B proteins, such as humans and mice, while D701N is more commonly seen in isolates from swine, dogs and horses where ANP32A proteins are more strongly pro-viral. In an experimental evolution approach, passage of avian viruses in human cells drives acquisition of PB2-E627K, but not when ANP32B is ablated. The strong pro-viral support of ANP32B for PB2-E627K maps to the LCAR region of ANP32B.
1
Citation4
0
Save
8

Avian Influenza A Virus polymerase can utilise human ANP32 proteins to support cRNA but not vRNA synthesis

Olivia Swann et al.Oct 24, 2023
+2
T
A
O
Abstract Host restriction limits the emergence of novel pandemic strains from the Influenza A Virus avian reservoir. For efficient replication in mammalian cells, the avian influenza RNA-dependent RNA polymerase must adapt to use human orthologues of the host factor ANP32, which lack a 33 amino acid insertion relative to avian ANP32A. Here we find that influenza polymerase requires ANP32 proteins to support both steps of replication: cRNA and vRNA synthesis. Nevertheless, avian strains are only restricted in vRNA synthesis in human cells. Therefore, avian polymerase can use human ANP32 orthologues to support cRNA synthesis, without acquiring mammalian adaptations. This implies a fundamental difference in the mechanism by which ANP32 proteins support cRNA vs vRNA synthesis. Importance In order to infect humans and cause a pandemic, avian influenza must first learn how to use human versions of the proteins the virus hijacks for replication – instead of the avian versions found in bird cells. One such protein is ANP32. Understanding the details of how host proteins such as ANP32 support viral activity may allow the design of new antiviral treatments that disrupt these interactions. In this work, we use cells that lack ANP32 to unambiguously demonstrate ANP32 is needed for both steps of influenza genome replication. Surprisingly however, we find that avian influenza can use human ANP32 proteins for the first step of replication without any adaptation, but only avian ANP32 for the second step of replication. This suggests ANP32 may have an additional role in supporting the second step of replication, and it is this activity that is specifically blocked when avian influenza infects human cells.
8
Paper
Citation3
0
Save
190

The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells

Thomas Peacock et al.Oct 11, 2023
+17
J
D
T
Summary SARS-CoV-2 enters cells via its spike glycoprotein which must be cleaved sequentially at the S1/S2, then the S2’ cleavage sites (CS) to mediate membrane fusion. SARS-CoV-2 has a unique polybasic insertion at the S1/S2 CS, which we demonstrate can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture adapted SARS-CoV-2 virus with a S1/S2 deletion, we show that the polybasic insertion is selected for in lung cells and primary human airway epithelial cultures but selected against in Vero E6, a cell line used for passaging SARS-CoV-2. We find this selective advantage depends on expression of the cell surface protease, TMPRSS2, that allows virus entry independent of endosomes thus avoiding antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin CS was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals. Thus, the polybasic CS is a key determinant for efficient SARS-CoV-2 transmission.
190
0
Save
0

Swine ANP32A supports avian influenza virus polymerase

Thomas Peacock et al.May 7, 2020
+5
E
O
T
Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as mixing vessels, being susceptible to both avian and human origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus polymerase cofactors. In this study we describe how swine ANP32A, uniquely among the mammalian ANP32 proteins tested, supports some, albeit limited, activity of avian origin influenza virus polymerases. We further show that after the swine-origin influenza virus emerged in humans and caused the 2009 pandemic it evolved polymerase gene mutations that enabled it to more efficiently use human ANP32 proteins. We map the super pro-viral activity of swine ANP32A to a pair of amino acids, 106 and 156, in the LRR and central domains and show these mutations enhance binding to influenza virus trimeric polymerase. These findings help elucidate the molecular basis for the mixing vessel trait of swine and further our understanding of the evolution and ecology of viruses in this host.