DP
David Perlman
Author with expertise in Mass Spectrometry Techniques with Proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
403
h-index:
18
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2

Harrison Specht et al.Jan 27, 2021
Abstract Background Macrophages are innate immune cells with diverse functional and molecular phenotypes. This diversity is largely unexplored at the level of single-cell proteomes because of the limitations of quantitative single-cell protein analysis. Results To overcome this limitation, we develop SCoPE2, which substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation. These advances enable us to analyze the emergence of cellular heterogeneity as homogeneous monocytes differentiate into macrophage-like cells in the absence of polarizing cytokines. SCoPE2 quantifies over 3042 proteins in 1490 single monocytes and macrophages in 10 days of instrument time, and the quantified proteins allow us to discern single cells by cell type. Furthermore, the data uncover a continuous gradient of proteome states for the macrophages, suggesting that macrophage heterogeneity may emerge in the absence of polarizing cytokines. Parallel measurements of transcripts by 10× Genomics suggest that our measurements sample 20-fold more protein copies than RNA copies per gene, and thus, SCoPE2 supports quantification with improved count statistics. This allowed exploring regulatory interactions, such as interactions between the tumor suppressor p53, its transcript, and the transcripts of genes regulated by p53. Conclusions Even in a homogeneous environment, macrophage proteomes are heterogeneous. This heterogeneity correlates to the inflammatory axis of classically and alternatively activated macrophages. Our methodology lays the foundation for automated and quantitative single-cell analysis of proteins by mass spectrometry and demonstrates the potential for inferring transcriptional and post-transcriptional regulation from variability across single cells.
0
Citation380
0
Save
58

Prioritized single-cell proteomics reveals molecular and functional polarization across primary macrophages

R. Huffman et al.Mar 18, 2022
Major aims of single-cell proteomics include increasing the consistency, sensitivity, and depth of protein quantification, especially for proteins and modifications of biological interest. To simultaneously advance all these aims, we developed prioritized Single Cell ProtEomics (pSCoPE). pSCoPE consistently analyzes thousands of prioritized peptides across all single cells (thus increasing data completeness) while analyzing identifiable peptides at full duty-cycle, thus increasing proteome depth. These strategies increased the sensitivity, data completeness, and proteome coverage over 2-fold. The gains enabled quantifying protein variation in untreated and lipopolysaccharide-treated primary macrophages. Within each condition, proteins covaried within functional sets, including phagosome maturation and proton transport. This protein covariation within a treatment condition was similar across the treatment conditions and coupled to phenotypic variability in endocytic activity. pSCoPE also enabled quantifying proteolytic products, suggesting a gradient of cathepsin activities within a treatment condition. pSCoPE is freely available and widely applicable, especially for analyzing proteins of interest without sacrificing proteome coverage. Support for pSCoPE is available at: scp.slavovlab.net/pSCoPE Abstract Figure
58
Citation17
0
Save
26

Detection of Cell-Cell Interactions via Photocatalytic Cell Tagging

Rob Oslund et al.Oct 4, 2021
Abstract Cell-cell interactions drive essential biological processes critical to cell and tissue development, function, pathology, and disease outcome. The growing appreciation of immune cell interactions within disease environments has led to significant efforts to develop protein- and cell-based therapeutic strategies. A better understanding of these cell-cell interactions will enable the development of effective immunotherapies. However, characterizing these complex cellular interactions at molecular resolution in their native biological contexts remains challenging. To address this, we introduce photocatalytic cell tagging (PhoTag), a modality agnostic platform for profiling cell-cell interactions. Using photoactivatable flavin-based cofactors, we generate phenoxy radical tags for targeted labeling at the cell surface. Through various targeting modalities (e.g. MHC-Multimer, antibody, single domain antibody (VHH)) we deliver a flavin photocatalyst for cell tagging within monoculture, co-culture, and peripheral blood mononuclear cells. PhoTag enables highly selective tagging of the immune synapse between an immune cell and an antigen-presenting cell through targeted labeling at the cell-cell junction. This allowed for the ability to profile gene expression-level differences between interacting and bystander cell populations. Given the modality agnostic and spatio-temporal nature of PhoTag, we envision its broad utilization to detect and profile intercellular interactions within an immune synapse and other confined cellular regions for any biological system.
26
Citation2
0
Save
0

Nitrative signaling into cardiac lactate dehydrogenase Trp324 modulates active site loop mobility and activity under metabolic stress

Cristian Nogales et al.Jun 16, 2018
Protein tyrosine nitration is a hallmark of oxidative stress related disease states, commonly detected as anti-nitrotyrosine immunoreactivity. The precise reactive oxygen sources, mechanisms of nitration as well as the modified target proteins and functional consequences, however, remain often unclear. Here we explore protein tyrosine nitration under basal conditions and find surprisingly physiologically nitrated proteins. Upon purifying a prominent physiologically nitrotyrosine immunopositive in hearts from mouse, rat and pig, we identify it as lactate dehydrogenase (LDH). Mechanistically, LDH's degree of basal nitration depended on two canonical sources, NO synthase (NOS) and myeloperoxidase (MPO), respectively. When validating the nitrated amino acid by MALDI-TOF mass spectrometry, we, surprisingly, located LDH nitration not to a tyrosine but the C-terminal tryptophan, Trp324. Molecular dynamics simulations suggested that Trp324 nitration restricts the interaction of the active site loop with the C-terminal a-helix essential for activity. This prediction was confirmed by enzyme kinetics revealing an apparent lower Vmax of nitrated LDH, although yet unidentified concurrent oxidative modifications may contribute. Protein nitration is, thus, not a by definition disease marker but reflects also physiological signaling by eNOS/NO, MPO/nitrite and possibly other pathways. The commonly used assay of anti-nitrotyrosine immunoreactivity is apparently cross-reactive to nitrotryptophan requiring a reevaluation of the protein nitration literature. In the case of LDH, nitration of Trp324 is aggravated under cardiac metabolic stress conditions and functionally limits maximal enzyme activity. Trp324-nitrated LDH may serve both as a previously not recognized disease biomarker and possibly mechanistic lead to understand the metabolic changes under these conditions.
0

Single-cell mass-spectrometry quantifies the emergence of macrophage heterogeneity

Harrison Specht et al.Jun 9, 2019
The fate and physiology of individual cells are controlled by protein interactions. Yet, our ability to quantitatively analyze proteins in single cells has remained limited. To overcome this barrier, we developed SCoPE2. It lowers cost and hands-on time by introducing automated and miniaturized sample preparation while substantially increasing quantitative accuracy. These advances enabled us to analyze the emergence of cellular heterogeneity as homogeneous monocytes differentiated into macrophage-like cells in the absence of polarizing cytokines. SCoPE2 quantified over 2,700 proteins in 1,018 single monocytes and macrophages in ten days of instrument time, and the quantified proteins allowed us to discern single cells by cell type. Furthermore, the data uncovered a continuous gradient of proteome states for the macrophage-like cells, suggesting that macrophage heterogeneity may emerge even in the absence of polarizing cytokines. Parallel measurements of transcripts by 10x Genomics scRNA-seq suggest that SCoPE2 samples 20-fold more copies per gene, thus supporting quantification with improved count statistics. Joint analysis of the data indicated that most genes had similar responses at the protein and RNA levels, though the responses of hundreds of genes differed. Our methodology lays the foundation for automated and quantitative single-cell analysis of proteins by mass-spectrometry.![Figure][1] [1]: pending:yes