JK
Jayaram Kancherla
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(75% Open Access)
Cited by:
2,064
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology

Ann Richard et al.Jul 1, 2016
The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.
0
Citation533
0
Save
0

Comparative cellular analysis of motor cortex in human, marmoset and mouse

Trygve Bakken et al.Oct 6, 2021
Abstract The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals 1 . Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.
0
Citation478
0
Save
0

CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

Kamel Mansouri et al.Feb 23, 2016
Background:Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program.Objectives:We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing.Methods:CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies.Results:Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing.Conclusion:This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points.Citation:Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023–1033; http://dx.doi.org/10.1289/ehp.1510267
0

A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex

Zizhen Yao et al.Oct 6, 2021
Abstract Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain 1–3 . With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas—containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities—is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions 4 . We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.
0
Citation228
0
Save
0

An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types

Zizhen Yao et al.Mar 2, 2020
Abstract Single cell transcriptomics has transformed the characterization of brain cell identity by providing quantitative molecular signatures for large, unbiased samples of brain cell populations. With the proliferation of taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful cell types. We used a battery of single-cell transcriptome and epigenome measurements generated by the BRAIN Initiative Cell Census Network (BICCN) to comprehensively assess the molecular signatures of cell types in the mouse primary motor cortex (MOp). We further developed computational and statistical methods to integrate these multimodal data and quantitatively validate the reproducibility of the cell types. The reference atlas, based on more than 600,000 high quality single-cell or -nucleus samples assayed by six molecular modalities, is a comprehensive molecular account of the diverse neuronal and non-neuronal cell types in MOp. Collectively, our study indicates that the mouse primary motor cortex contains over 55 neuronal cell types that are highly replicable across analysis methods, sequencing technologies, and modalities. We find many concordant multimodal markers for each cell type, as well as thousands of genes and gene regulatory elements with discrepant transcriptomic and epigenomic signatures. These data highlight the complex molecular regulation of brain cell types and will directly enable design of reagents to target specific MOp cell types for functional analysis.
0
Citation62
0
Save
2

Metaviz: interactive statistical and visual analysis of metagenomic data

Justin Wagner et al.Feb 26, 2018
Large studies profiling microbial communities and their association with healthy or disease phenotypes are now commonplace. Processed data from many of these studies are publicly available but significant effort is required for users to effectively organize, explore and integrate it, limiting the utility of these rich data resources. Effective integrative and interactive visual and statistical tools to analyze many metagenomic samples can greatly increase the value of these data for researchers. We present Metaviz, a tool for interactive exploratory data analysis of annotated microbiome taxonomic community profiles derived from marker gene or whole metagenome shotgun sequencing. Metaviz is uniquely designed to address the challenge of browsing the hierarchical structure of metagenomic data features while rendering visualizations of data values that are dynamically updated in response to user navigation. We use Metaviz to provide the UMD Metagenome Browser web service, allowing users to browse and explore data for more than 7000 microbiomes from published studies. Users can also deploy Metaviz as a web service, or use it to analyze data through the metavizr package to interoperate with state-of-the-art analysis tools available through Bioconductor. Metaviz is free and open source with the code, documentation and tutorials publicly accessible.
2
Citation29
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 21, 2020
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
0

Metaviz: interactive statistical and visual analysis of metagenomic data

Justin Wagner et al.Feb 2, 2017
Abstract Along with the survey techniques of 16S rRNA amplicon and whole-metagenome shotgun sequencing, an array of tools exists for clustering, taxonomic annotation, normalization, and statistical analysis of microbiome sequencing results. Integrative and interactive visualization that enables researchers to perform exploratory analysis in this feature rich hierarchical data is an area of need. In this work, we present Metaviz, a web browser-based tool for interactive exploratory metagenomic data analysis. Metaviz can visualize abundance data served from an R session or a Python web service that queries a graph database. As metagenomic sequencing features have a hierarchy, we designed a novel navigation mechanism to explore this feature space. We visualize abundance counts with heatmaps and stacked bar plots that are dynamically updated as a user selects taxonomic features to inspect. Metaviz also supports common data exploration techniques, including PCA scatter plots to interpret variability in the dataset and alpha diversity boxplots for examining ecological community composition. The Metaviz application and documentation is hosted at http://www.metaviz.org .
0
Paper
Citation5
0
Save
Load More