CL
Chongyuan Luo
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
University of California, Los Angeles, Samueli Institute, Salk Institute for Biological Studies
+ 7 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
25
(48% Open Access)
Cited by:
529
h-index:
32
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD

Michael Gandal et al.Mar 11, 2024
+23
B
J
M
Abstract Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations 1–3 . In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural–immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex 1,2,4–6 . However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.
0
Paper
Citation85
-1
Save
0

An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types

Zizhen Yao et al.May 6, 2020
+80
F
H
Z
Abstract Single cell transcriptomics has transformed the characterization of brain cell identity by providing quantitative molecular signatures for large, unbiased samples of brain cell populations. With the proliferation of taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful cell types. We used a battery of single-cell transcriptome and epigenome measurements generated by the BRAIN Initiative Cell Census Network (BICCN) to comprehensively assess the molecular signatures of cell types in the mouse primary motor cortex (MOp). We further developed computational and statistical methods to integrate these multimodal data and quantitatively validate the reproducibility of the cell types. The reference atlas, based on more than 600,000 high quality single-cell or -nucleus samples assayed by six molecular modalities, is a comprehensive molecular account of the diverse neuronal and non-neuronal cell types in MOp. Collectively, our study indicates that the mouse primary motor cortex contains over 55 neuronal cell types that are highly replicable across analysis methods, sequencing technologies, and modalities. We find many concordant multimodal markers for each cell type, as well as thousands of genes and gene regulatory elements with discrepant transcriptomic and epigenomic signatures. These data highlight the complex molecular regulation of brain cell types and will directly enable design of reagents to target specific MOp cell types for functional analysis.
0
Citation45
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
91

Rapid cost-effective viral genome sequencing by V-seq

Longhua Guo et al.Oct 24, 2023
+16
J
J
L
ABSTRACT Conventional methods for viral genome sequencing largely use metatranscriptomic approaches or, alternatively, enrich for viral genomes by amplicon sequencing with virus-specific PCR or hybridization-based capture. These existing methods are costly, require extensive sample handling time, and have limited throughput. Here, we describe V-seq, an inexpensive, fast, and scalable method that performs targeted viral genome sequencing by multiplexing virus-specific primers at the cDNA synthesis step. We designed densely tiled reverse transcription (RT) primers across the SARS-CoV-2 genome, with a subset of hexamers at the 3’ end to minimize mis-priming from the abundant human rRNA repeats and human RNA PolII transcriptome. We found that overlapping RT primers do not interfere, but rather act in concert to improve viral genome coverage in samples with low viral load. We provide a path to optimize V-seq with SARS-CoV-2 as an example. We anticipate that V-seq can be applied to investigate genome evolution and track outbreaks of RNA viruses in a cost-effective manner. More broadly, the multiplexed RT approach by V-seq can be generalized to other applications of targeted RNA sequencing.
91
Paper
Citation12
0
Save
1

DNA Methylation Atlas of the Mouse Brain at Single-Cell Resolution

Hanqing Liu et al.Oct 24, 2023
+25
W
J
H
Summary Mammalian brain cells are remarkably diverse in gene expression, anatomy, and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. We carried out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single nucleus DNA methylation sequencing to profile 110,294 nuclei from 45 regions of the mouse cortex, hippocampus, striatum, pallidum, and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements, and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types, and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, an artificial neural network model was constructed that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data allowed prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse brain.
1
Citation10
0
Save
1

Epigenomic and chromosomal architectural reconfiguration in developing human frontal cortex and hippocampus

Matthew Heffel et al.Oct 24, 2023
+19
Y
J
M
Abstract The human frontal cortex and hippocampus play critical roles in learning and cognition. We investigated the epigenomic and 3D chromatin conformational reorganization during the development of the frontal cortex and hippocampus, using more than 53,000 joint single-nucleus profiles of chromatin conformation and DNA methylation (sn-m3C-seq). The remodeling of DNA methylation predominantly occurs during late-gestational to early-infant development and is temporally separated from chromatin conformation dynamics. Neurons have a unique Domain-Dominant chromatin conformation that is different from the Compartment-Dominant conformation of glial cells and non-brain tissues. We reconstructed the regulatory programs of cell-type differentiation and found putatively causal common variants for schizophrenia strongly overlap with chromatin loop-connected, cell-type-specific regulatory regions. Our data demonstrate that single-cell 3D-regulome is an effective approach for dissecting neuropsychiatric risk loci.
1
Citation6
0
Save
0

Cell-type-specific effects of age and sex on human cortical neurons

Jo-fan Chien et al.Sep 6, 2024
+17
B
H
J
Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors. Excitatory neurons had more profound age-related changes in their gene expression and DNA methylation than inhibitory cells. Hundreds of genes involved in synaptic activity, including EGR1, were less expressed in aged adults. Genes located in subtelomeric regions increased their expression with age and correlated with reduced telomere length. We further mapped cell-type-specific sex differences in gene expression and X-inactivation escape genes. Multi-omic single-nucleus epigenomes and transcriptomes provide new insight into the effects of age and sex on human neurons.
0
Citation3
0
Save
1

Robust enhancer-gene regulation identified by single-cell transcriptomes and epigenomes

Fangming Xie et al.Oct 24, 2023
+16
Z
E
F
Abstract Integrating single-cell transcriptomes and epigenomes across diverse cell types can link genes with the cis -regulatory elements (CREs) that control expression. Gene co-expression across cell types confounds simple correlation-based analysis and results in high false prediction rates. We developed a procedure that controls for co-expression between genes and integrates multiple molecular modalities, and used it to identify >10,000 gene-CRE pairs that contribute to gene expression programs in different cell types in the mouse brain.
1
Citation1
0
Save
0

Multi-omic profiling of transcriptome and DNA methylome in single nuclei with molecular partitioning

Chongyuan Luo et al.May 6, 2020
+4
B
H
C
Single-cell transcriptomic and epigenomic analyses provide powerful strategies for unbiased determination of cell types in mammalian tissues. Although previous studies have identified cell types using individual molecular signatures, the generation of consensus cell type classification requires the integration of multiple data types. Most existing single-cell techniques can only make one type of molecular measurement. Here we describe single-nucleus methylcytosine and transcriptome sequencing (snmCT-seq), a multi-omic method that requires no physical separation of DNA and RNA molecules. We demonstrated that snmCT-seq profiles generated from single cells or nuclei robustly distinguish human cell types and accurately measures cytosine DNA methylation and gene expression signatures of each cell type.
0

Single-cell multi-omic profiling of chromatin conformation and DNA methylome

Dong‐Sung Lee et al.May 6, 2020
+8
J
C
D
Recent advances in the development of single cell epigenomic assays have facilitated the analysis of gene regulatory landscapes in complex biological systems. Methods for detection of single-cell epigenomic variation such as DNA methylation sequencing and ATAC-seq hold tremendous promise for delineating distinct cell types and identifying their critical cis-regulatory sequences. Emerging evidence has shown that in addition to cis-regulatory sequences, dynamic regulation of 3D chromatin conformation is a critical mechanism for the modulation of gene expression during development and disease. It remains unclear whether single-cell Chromatin Conformation Capture (3C) or Hi-C profiles are suitable for cell type identification and allow the reconstruction of cell-type specific chromatin conformation maps. To address these challenges, we have developed a multi-omic method single-nucleus methyl-3C sequencing (sn-m3C-seq) to profile chromatin conformation and DNA methylation from the same cell. We have shown that bulk m3C-seq and sn-m3C-seq accurately capture chromatin organization information and robustly separate mouse cell types. We have developed a fluorescent-activated nuclei sorting strategy based on DNA content that eliminates nuclei multiplets caused by crosslinking. The sn-m3C-seq method allows high-resolution cell-type classification using two orthogonal types of epigenomic information and the reconstruction of cell-type specific chromatin conformation maps.
Load More