SM
Steven McCarroll
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(47% Open Access)
Cited by:
46
h-index:
48
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 21, 2020
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
30

Comparative transcriptomics reveals human-specific cortical features

Nikolas Jorstad et al.Sep 19, 2022
Abstract Humans have unique cognitive abilities among primates, including language, but their molecular, cellular, and circuit substrates are poorly understood. We used comparative single nucleus transcriptomics in adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets from the middle temporal gyrus (MTG) to understand human-specific features of cellular and molecular organization. Human, chimpanzee, and gorilla MTG showed highly similar cell type composition and laminar organization, and a large shift in proportions of deep layer intratelencephalic-projecting neurons compared to macaque and marmoset. Species differences in gene expression generally mirrored evolutionary distance and were seen in all cell types, although chimpanzees were more similar to gorillas than humans, consistent with faster divergence along the human lineage. Microglia, astrocytes, and oligodendrocytes showed accelerated gene expression changes compared to neurons or oligodendrocyte precursor cells, indicating either relaxed evolutionary constraints or positive selection in these cell types. Only a few hundred genes showed human-specific patterning in all or specific cell types, and were significantly enriched near human accelerated regions (HARs) and conserved deletions (hCONDELS) and in cell adhesion and intercellular signaling pathways. These results suggest that relatively few cellular and molecular changes uniquely define adult human cortical structure, particularly by affecting circuit connectivity and glial cell function.
30
Citation11
0
Save
0

A concerted neuron–astrocyte program declines in ageing and schizophrenia

Emi Ling et al.Mar 6, 2024
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.
0
Citation8
-1
Save
0

Higher genetic risk of schizophrenia is associated with lower cognitive performance in healthy individuals

Rebecca Shafee et al.Jan 27, 2017
Abstract Psychotic disorders including schizophrenia are commonly accompanied by cognitive deficits. Recent studies have reported negative genetic correlations between schizophrenia and indicators of cognitive ability such as general intelligence and processing speed. Here we compare the effect of the genetic risk of schizophrenia (PRS SCZ ) on measures that differ in their relationships with psychosis onset: a measure of current cognitive abilities (the Brief Assessment of Cognition in Schizophrenia, BACS) that is greatly reduced in psychosis patients; a measure of premorbid intelligence that is minimally affected by psychosis (the Wide-Range Achievement Test, WRAT); and educational attainment (EY), which covaries with both BACS and WRAT. Using genome-wide SNP data from 314 psychotic and 423 healthy research participants in the Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) Consortium, we investigated the association of PRS SCZ with BACS, WRAT and EY. Among apparently healthy individuals, greater genetic risk for schizophrenia (PRS SCZ ) was associated with lower BACS scores (r = −0.19, p = 1 × 10 −4 at P T = 1 × 10 −4 ) but did not associate with WRAT or EY, suggesting that these areas of cognition vary in their etiologic relationships with schizophrenia. Among individuals with psychosis, PRS SCZ did not associate with variation in cognitive performance. These findings suggest that the same cognitive abilities that are disrupted in psychotic disorders are also associated with schizophrenia genetic risk in the general population. Specific cognitive phenotypes, independent of education or general intelligence, could be more deeply studied for insight into the specific processes affected by the genetic influences on psychosis. Significance Psychotic disorders such as schizophrenia often involve profound cognitive deficits, the genetic underpinnings of which remain to be elucidated. Poor educational performance early in life is a well-known risk factor for future psychotic illness, potentially reflecting either shared genetic influences or other risk factors that are epidemiologically correlated. Here we show that, in apparently healthy individuals, common genetic risk factors for schizophrenia associate with lower performance in areas of cognition that are impaired in psychotic disorders but do not associate independently with educational attainment or more general measures of intelligence. These results suggest that specific cognitive phenotypes – independent of education or general intelligence – could be more deeply studied for insight into the processes affected by the genetic influences on psychosis.
0
Citation5
0
Save
0

Complement component 4 genes contribute sex-specific vulnerability in diverse illnesses

Nolan Kamitaki et al.Sep 9, 2019
Many common illnesses differentially affect men and women for unknown reasons. The autoimmune diseases lupus and Sjögren’s syndrome affect nine times more women than men 1,2 , whereas schizophrenia affects men more frequently and severely 3–5 . All three illnesses have their strongest common-genetic associations in the Major Histocompatibility Complex (MHC) locus, an association that in lupus and Sjögren’s syndrome has long been thought to arise from HLA alleles 6–13 . Here we show that the complement component 4 ( C4 ) genes in the MHC locus, recently found to increase risk for schizophrenia 14 , generate 7-fold variation in risk for lupus (95% CI: 5.88-8.61; p < 10 −117 in total) and 16-fold variation in risk for Sjögren’s syndrome (95% CI: 8.59-30.89; p < 10 −23 in total), with C4A protecting more strongly than C4B in both illnesses. The same alleles that increase risk for schizophrenia, greatly reduced risk for lupus and Sjögren’s syndrome. In all three illnesses, C4 alleles acted more strongly in men than in women: common combinations of C4A and C4B generated 14-fold variation in risk for lupus and 31-fold variation in risk for Sjögren’s syndrome in men (vs. 6-fold and 15-fold among women respectively) and affected schizophrenia risk about twice as strongly in men as in women. At a protein level, both C4 and its effector (C3) were present at greater levels in men than women in cerebrospinal fluid ( p < 10 −5 for both C4 and C3) and plasma among adults ages 20-50 15–17 , corresponding to the ages of differential disease vulnerability. Sex differences in complement protein levels may help explain the larger effects of C4 alleles in men, women’s greater risk of SLE and Sjögren’s, and men’s greater vulnerability in schizophrenia. These results nominate the complement system as a source of sexual dimorphism in vulnerability to diverse illnesses.
0
Citation3
0
Save
1

Astrocytic cell adhesion genes linked to schizophrenia correlate with synaptic programs in neurons

Olli Pietiläinen et al.Sep 12, 2021
Abstract The maturation of neurons and the development of synapses – while emblematic of neurons – also rely on interactions with astrocytes and other glia. To study the role of glia-neuron interactions, we analyzed the transcriptomes of human pluripotent stem cell (hPSC)-derived neurons, from a total of 80 human donors, that were cultured with or without contact with glial cells. We found that the presence of astrocytes enhanced synaptic gene-expression programs in neurons. These changes in neuronal synaptic gene expression correlated with increased expression in the co-cultured glia of genes that encode synaptic cell adhesion molecules, and they were greatly enhanced in the glia in coculture. Both the neuronal and astrocyte gene-expression programs were enriched for genes that are linked to schizophrenia risk. Physical contact between the two cell types was required for the induction of synaptic programs in neurons. Our results suggest that astrocyte-expressed genes with synaptic functions are associated with stronger expression of synaptic genetic programs in neurons and suggest a potential role for astrocyte-neuron interactions in schizophrenia.
1
Citation1
0
Save
0

Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse

Trygve Bakken et al.Apr 1, 2020
The primary motor cortex (M1) is essential for voluntary fine motor control and is functionally conserved across mammals. Using high-throughput transcriptomic and epigenomic profiling of over 450,000 single nuclei in human, marmoset monkey, and mouse, we demonstrate a broadly conserved cellular makeup of this region, whose similarity mirrors evolutionary distance and is consistent between the transcriptome and epigenome. The core conserved molecular identity of neuronal and non-neuronal types allowed the generation of a cross-species consensus cell type classification and inference of conserved cell type properties across species. Despite overall conservation, many species specializations were apparent, including differences in cell type proportions, gene expression, DNA methylation, and chromatin state. Few cell type marker genes were conserved across species, providing a short list of candidate genes and regulatory mechanisms responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allowed the Patch-seq identification of layer 5 (L5) corticospinal Betz cells in non-human primate and human and characterization of their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell type diversity in M1 across mammals and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.
0

Monogenic and polygenic inheritance become instruments for clonal selection

Po‐Ru Loh et al.May 29, 2019
Clonally expanded blood cells with somatic mutations (clonal hematopoiesis, CH) are commonly acquired with age and increase risk of later blood cancer. To identify genes and mutations that give selective advantage to mutant clones, we identified among 482,789 UK Biobank participants some 19,632 autosomal mosaic chromosomal alterations (mCAs), including deletions, duplications, and copy number-neutral loss of heterozygosity (CNN-LOH). Analysis of these acquired mutations, along with inherited genetic variation, revealed 52 inherited, rare, large-effect coding or splice variants (in seven genes) that greatly (odds ratios of 11 to 758) increased vulnerability to CH with specific acquired CNN-LOH mutations. Acquired mutations systematically replaced the inherited risk alleles (at MPL ) or duplicated them to the homologous chromosome (at FH , NBN , MRE11 , ATM , SH2B3 , and TM2D3 ). Three of the seven genes ( MRE11 , NBN , and ATM ) encode components of the MRN-ATM pathway, which limits cell division after DNA damage and telomere attrition; another two ( MPL , SH2B3 ) encode proteins that regulate stem cell self-renewal. In addition to these monogenic inherited forms of CH, we found a common and surprisingly polygenic form: CNN-LOH mutations across the genome tended to cause chromosomal segments with alleles that promote hematopoietic cell proliferation to replace their homologous (allelic) counterparts, increasing polygenic drive for blood-cell proliferation traits. This dynamic reveals a challenge for lifelong cytopoiesis in any genetically diverse species: individuals inherit unequal proliferative genetic potentials on paternally and maternally derived chromosome-pairs, and readily-acquired mutations that replace chromosomal segments with their homologous counterparts give selective advantage to mutant cells.
59

Calcium-permeable AMPA receptors govern PV neuron feature selectivity

Ingie Hong et al.Jul 20, 2023
The brain helps us survive by forming internal representations of the external world 1,2 . Excitatory cortical neurons are often precisely tuned to specific external stimuli 3,4 . However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective 5 . PV interneurons differ from excitatory cells in their neurotransmitter receptor subtypes, including AMPA receptors 6,7 . While excitatory neurons express calcium-impermeable AMPA receptors containing the GluA2 subunit, PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find a low expression stoichiometry of GluA2 mRNA relative to other subunits in PV interneurons which is conserved across ferrets, rodents, marmosets, and humans, causing abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Sparse CP-AMPAR manipulations demonstrated that this increase was cell-autonomous and could occur well beyond development. Interestingly, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, suggesting that the selectivity of PV interneurons can be altered without drastically changing connectivity. In GluA2 knockout mice, where all AMPARs are calcium-permeable, excitatory neurons showed significantly reduced orientation selectivity, suggesting that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Remarkably, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, indicating that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a novel role of CP-AMPARs in maintaining a low-selectivity sensory representation in PV interneurons and suggest a conserved molecular mechanism that distinguishes the unique synaptic computations of inhibitory and excitatory neurons.
Load More