ES
Eleanor Sanderson
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(57% Open Access)
Cited by:
3,653
h-index:
32
/
i10-index:
64
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mendelian randomization

Eleanor Sanderson et al.Feb 10, 2022
Mendelian randomization (MR) is a term that applies to the use of genetic variation to address causal questions about how modifiable exposures influence different outcomes. The principles of MR are based on Mendel’s laws of inheritance and instrumental variable estimation methods, which enable the inference of causal effects in the presence of unobserved confounding. In this Primer, we outline the principles of MR, the instrumental variable conditions underlying MR estimation and some of the methods used for estimation. We go on to discuss how the assumptions underlying an MR study can be assessed and describe methods of estimation that are robust to certain violations of these assumptions. We give examples of a range of studies in which MR has been applied, the limitations of current methods of analysis and the outlook for MR in the future. The differences between the assumptions required for MR analysis and other forms of epidemiological studies means that MR can be used as part of a triangulation across multiple sources of evidence for causal inference. Mendelian randomization is a technique for using genetic variation to examine the causal effect of a modifiable exposure on an outcome such as disease status. This Primer by Sanderson et al. explains the concepts of and the conditions required for Mendelian randomization analysis, describes key examples of its application and looks towards applying the technique to growing genomic datasets.
0
Citation813
0
Save
1

An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings

Eleanor Sanderson et al.Nov 13, 2018
Mendelian randomization (MR) is a powerful tool in epidemiology that can be used to estimate the causal effect of an exposure on an outcome in the presence of unobserved confounding, by utilizing genetic variants that are instrumental variables (IVs) for the exposure. This has been extended to multivariable MR (MVMR) to estimate the effect of two or more exposures on an outcome.We use simulations and theory to clarify the interpretation of estimated effects in a MVMR analysis under a range of underlying scenarios, where a secondary exposure acts variously as a confounder, a mediator, a pleiotropic pathway and a collider. We then describe how instrument strength and validity can be assessed for an MVMR analysis in the single-sample setting, and develop tests to assess these assumptions in the popular two-sample summary data setting. We illustrate our methods using data from UK Biobank to estimate the effect of education and cognitive ability on body mass index.MVMR analysis consistently estimates the direct causal effect of an exposure, or exposures, of interest and provides a powerful tool for determining causal effects in a wide range of scenarios with either individual- or summary-level data.
1
Citation793
0
Save
0

Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis

Tom Richardson et al.Mar 23, 2020
Background Circulating lipoprotein lipids cause coronary heart disease (CHD). However, the precise way in which one or more lipoprotein lipid-related entities account for this relationship remains unclear. Using genetic instruments for lipoprotein lipid traits implemented through multivariable Mendelian randomisation (MR), we sought to compare their causal roles in the aetiology of CHD. Methods and findings We conducted a genome-wide association study (GWAS) of circulating non-fasted lipoprotein lipid traits in the UK Biobank (UKBB) for low-density lipoprotein (LDL) cholesterol, triglycerides, and apolipoprotein B to identify lipid-associated single nucleotide polymorphisms (SNPs). Using data from CARDIoGRAMplusC4D for CHD (consisting of 60,801 cases and 123,504 controls), we performed univariable and multivariable MR analyses. Similar GWAS and MR analyses were conducted for high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I. The GWAS of lipids and apolipoproteins in the UKBB included between 393,193 and 441,016 individuals in whom the mean age was 56.9 y (range 39–73 y) and of whom 54.2% were women. The mean (standard deviation) lipid concentrations were LDL cholesterol 3.57 (0.87) mmol/L and HDL cholesterol 1.45 (0.38) mmol/L, and the median triglycerides was 1.50 (IQR = 1.11) mmol/L. The mean (standard deviation) values for apolipoproteins B and A-I were 1.03 (0.24) g/L and 1.54 (0.27) g/L, respectively. The GWAS identified multiple independent SNPs associated at P < 5 × 10−8 for LDL cholesterol (220), apolipoprotein B (n = 255), triglycerides (440), HDL cholesterol (534), and apolipoprotein A-I (440). Between 56%–93% of SNPs identified for each lipid trait had not been previously reported in large-scale GWASs. Almost half (46%) of these SNPs were associated at P < 5 × 10−8 with more than one lipid-related trait. Assessed individually using MR, LDL cholesterol (odds ratio [OR] 1.66 per 1-standard-deviation–higher trait; 95% CI: 1.49–1.86; P < 0.001), triglycerides (OR 1.34; 95% CI: 1.25–1.44; P < 0.001) and apolipoprotein B (OR 1.73; 95% CI: 1.56–1.91; P < 0.001) had effect estimates consistent with a higher risk of CHD. In multivariable MR, only apolipoprotein B (OR 1.92; 95% CI: 1.31–2.81; P < 0.001) retained a robust effect, with the estimate for LDL cholesterol (OR 0.85; 95% CI: 0.57–1.27; P = 0.44) reversing and that of triglycerides (OR 1.12; 95% CI: 1.02–1.23; P = 0.01) becoming weaker. Individual MR analyses showed a 1-standard-deviation–higher HDL cholesterol (OR 0.80; 95% CI: 0.75–0.86; P < 0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77–0.89; P < 0.001) to lower the risk of CHD, but these effect estimates attenuated substantially to the null on accounting for apolipoprotein B. A limitation is that, owing to the nature of lipoprotein metabolism, measures related to the composition of lipoprotein particles are highly correlated, creating a challenge in making exclusive interpretations on causation of individual components. Conclusions These findings suggest that apolipoprotein B is the predominant trait that accounts for the aetiological relationship of lipoprotein lipids with risk of CHD.
0
Citation586
0
Save
0

A weak instrument F -test in linear IV models with multiple endogenous variables

Eleanor Sanderson et al.Jun 22, 2015
We consider testing for weak instruments in a model with multiple endogenous variables. Unlike Stock and Yogo (2005), who considered a weak instruments problem where the rank of the matrix of reduced form parameters is near zero, here we consider a weak instruments problem of a near rank reduction of one in the matrix of reduced form parameters. For example, in a two-variable model, we consider weak instrument asymptotics of the form [Formula: see text] where [Formula: see text] and [Formula: see text] are the parameters in the two reduced-form equations, [Formula: see text] is a vector of constants and [Formula: see text] is the sample size. We investigate the use of a conditional first-stage [Formula: see text]-statistic along the lines of the proposal by Angrist and Pischke (2009) and show that, unless [Formula: see text], the variance in the denominator of their [Formula: see text]-statistic needs to be adjusted in order to get a correct asymptotic distribution when testing the hypothesis [Formula: see text]. We show that a corrected conditional [Formula: see text]-statistic is equivalent to the Cragg and Donald (1993) minimum eigenvalue rank test statistic, and is informative about the maximum total relative bias of the 2SLS estimator and the Wald tests size distortions. When [Formula: see text] in the two-variable model, or when there are more than two endogenous variables, further information over and above the Cragg-Donald statistic can be obtained about the nature of the weak instrument problem by computing the conditional first-stage [Formula: see text]-statistics.
0
Paper
Citation558
0
Save
0

Testing and correcting for weak and pleiotropic instruments in two‐sample multivariable Mendelian randomization

Eleanor Sanderson et al.Aug 2, 2021
Multivariable Mendelian randomization (MVMR) is a form of instrumental variable analysis which estimates the direct effect of multiple exposures on an outcome using genetic variants as instruments. Mendelian randomization and MVMR are frequently conducted using two‐sample summary data where the association of the genetic variants with the exposures and outcome are obtained from separate samples. If the genetic variants are only weakly associated with the exposures either individually or conditionally, given the other exposures in the model, then standard inverse variance weighting will yield biased estimates for the effect of each exposure. Here, we develop a two‐sample conditional F ‐statistic to test whether the genetic variants strongly predict each exposure conditional on the other exposures included in a MVMR model. We show formally that this test is equivalent to the individual level data conditional F ‐statistic, indicating that conventional rule‐of‐thumb critical values of 10, can be used to test for weak instruments. We then demonstrate how reliable estimates of the causal effect of each exposure on the outcome can be obtained in the presence of weak instruments and pleiotropy, by repurposing a commonly used heterogeneity Q ‐statistic as an estimating equation. Furthermore, the minimized value of this Q ‐statistic yields an exact test for heterogeneity due to pleiotropy. We illustrate our methods with an application to estimate the causal effect of blood lipid fractions on age‐related macular degeneration.
0
Citation327
0
Save
0

Use of genetic variation to separate the effects of early and later life adiposity on disease risk: mendelian randomisation study

Tom Richardson et al.May 6, 2020
To evaluate whether body size in early life has an independent effect on risk of disease in later life or whether its influence is mediated by body size in adulthood.Two sample univariable and multivariable mendelian randomisation.The UK Biobank prospective cohort study and four large scale genome-wide association studies (GWAS) consortiums.453 169 participants enrolled in UK Biobank and a combined total of more than 700 000 people from different GWAS consortiums.Measured body mass index during adulthood (mean age 56.5) and self-reported perceived body size at age 10.Coronary artery disease, type 2 diabetes, breast cancer, and prostate cancer.Having a larger genetically predicted body size in early life was associated with an increased odds of coronary artery disease (odds ratio 1.49 for each change in body size category unless stated otherwise, 95% confidence interval 1.33 to 1.68) and type 2 diabetes (2.32, 1.76 to 3.05) based on univariable mendelian randomisation analyses. However, little evidence was found of a direct effect (ie, not through adult body size) based on multivariable mendelian randomisation estimates (coronary artery disease: 1.02, 0.86 to 1.22; type 2 diabetes:1.16, 0.74 to 1.82). In the multivariable mendelian randomisation analysis of breast cancer risk, strong evidence was found of a protective direct effect for larger body size in early life (0.59, 0.50 to 0.71), with less evidence of a direct effect of adult body size on this outcome (1.08, 0.93 to 1.27). Including age at menarche as an additional exposure provided weak evidence of a total causal effect (univariable mendelian randomisation odds ratio 0.98, 95% confidence interval 0.91 to 1.06) but strong evidence of a direct causal effect, independent of early life and adult body size (multivariable mendelian randomisation odds ratio 0.90, 0.85 to 0.95). No strong evidence was found of a causal effect of either early or later life measures on prostate cancer (early life body size odds ratio 1.06, 95% confidence interval 0.81 to 1.40; adult body size 0.87, 0.70 to 1.08).The findings suggest that the positive association between body size in childhood and risk of coronary artery disease and type 2 diabetes in adulthood can be attributed to individuals remaining large into later life. However, having a smaller body size during childhood might increase the risk of breast cancer regardless of body size in adulthood, with timing of puberty also putatively playing a role.
0
Citation239
0
Save
0

Mendelian randomisation for mediation analysis: current methods and challenges for implementation

Alice Carter et al.Nov 8, 2019
Abstract Mediation analysis seeks to explain the pathway(s) through which an exposure affects an outcome. Mediation analysis experiences a number of methodological difficulties, including bias due to confounding and measurement error. Mendelian randomisation (MR) can be used to improve causal inference for mediation analysis. We describe two approaches that can be used for estimating mediation analysis with MR: multivariable Mendelian randomisation (MVMR) and two-step Mendelian randomisation. We outline the approaches and provide code to demonstrate how they can be used in mediation analysis. We review issues that can affect analyses, including confounding, measurement error, weak instrument bias, and analysis of multiple mediators. Description of the methods is supplemented by simulated and real data examples. Although Mendelian randomisation relies on large sample sizes and strong assumptions, such as having strong instruments and no horizontally pleiotropic pathways, our examples demonstrate that it is unlikely to be affected by confounders of the exposure or mediator and the outcome, reverse causality and non-differential measurement error of the exposure or mediator. Both MVMR and two-step MR can be implemented in both individual-level MR and summary data MR, and can improve causal inference in mediation analysis.
0
Citation21
0
Save
0

Education, intelligence and Alzheimer’s disease: Evidence from a multivariable two-sample Mendelian randomization study

E. Anderson et al.Aug 27, 2018
Abstract Objectives To examine whether educational attainment and intelligence have causal effects on risk of Alzheimer’s disease (AD), independently of each other. Design Two-sample univariable and multivariable Mendelian Randomization (MR) to estimate the causal effects of education on intelligence and vice versa, and the total and independent causal effects of both education and intelligence on risk of AD. Participants 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer’s Project (IGAP) consortium Main outcome measure Odds ratio of AD per standardised deviation increase in years of schooling and intelligence Results There was strong evidence of a causal, bidirectional relationship between intelligence and educational attainment, with the magnitude of effect being similar in both directions. Similar overall effects were observed for both educational attainment and intelligence on AD risk in the univariable MR analysis; with each SD increase in years of schooling and intelligence, odds of AD were, on average, 37% (95% CI: 23% to 49%) and 35% (95% CI: 25% to 43%) lower, respectively. There was little evidence from the multivariable MR analysis that educational attainment affected AD risk once intelligence was taken into account, but intelligence affected AD risk independently of educational attainment to a similar magnitude observed in the univariate analysis. Conclusions There is robust evidence for an independent, causal effect of intelligence in lowering AD risk, potentially supporting a role for cognitive training interventions to improve aspects of intelligence. However, given the observed causal effect of educational attainment on intelligence, there may also be support for policies aimed at increasing length of schooling to lower incidence of AD.
0
Citation20
0
Save
42

The use of negative control outcomes in Mendelian Randomisation to detect potential population stratification or selection bias

Eleanor Sanderson et al.Jun 1, 2020
Abstract A key assumption of Mendelian randomisation (MR) analysis is that there is no association between the genetic variants used as instruments and the outcome other than through the exposure of interest. Two ways in which this assumption can be violated are through population stratification and selection bias which can introduce confounding of the relationship between the genetic variants and the outcome and so induce an association between them. Negative control outcomes are increasingly used to detect unobserved confounding in observational epidemiological studies. Here we consider the use of negative control outcomes in MR studies. As a negative control outcome in an MR study we propose the use of phenotypes which are determined before the exposure and outcome but which are likely to be subject to the same confounding as the exposure or outcome of interest. We illustrate our method with a two-sample MR analysis of a preselected set of exposures on self-reported tanning ability and hair colour. Our results show that, of the 33 exposures considered, GWAS studies of adiposity and education related traits are likely to be subject to population stratification and/or selection bias that is not controlled for through adjustment and so any MR study including these traits may be subject to bias that cannot be identified through standard pleiotropy robust methods.
Load More