GH
Greggory Heller
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
418
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Survey of spiking in the mouse visual system reveals functional hierarchy

Joshua Siegle et al.Jan 20, 2021
+87
S
X
J
The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset—part of the Allen Brain Observatory2—that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures—response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale—are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas. A large, open dataset containing parallel recordings from six visual cortical and two thalamic areas of the mouse brain is presented, from which the relative timing of activity in response to visual stimuli and behaviour is used to construct a hierarchy scheme that corresponds to anatomical connectivity data.
96

Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology

Joshua Siegle et al.Aug 11, 2020
+24
X
P
J
Abstract Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of neurons in the brain. While these two modalities have distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging or electrophysiology. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging. This work explores which data transformations are most useful for explaining these modality-specific discrepancies. We show that the higher selectivity in imaging can be partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could not reconcile differences in responsiveness without sub-selecting neurons based on event rate or level of signal contamination. This suggests that differences in responsiveness more likely reflect neuronal sampling bias or cluster-merging artifacts during spike sorting of electrophysiological recordings, rather than flaws in event detection from fluorescence time series. This work establishes the dominant impacts of the two modalities’ respective biases on a set of functional metrics that are fundamental for characterizing sensory-evoked responses.
0

PhysMAP - interpretablein vivoneuronal cell type identification using multi-modal analysis of electrophysiological data

Eric Lee et al.Feb 28, 2024
+4
G
A
E
Abstract Cells of different types perform diverse computations and coordinate their activity during sensation, perception, and action. While electrophysiological approaches can measure the activity of many neurons simultaneously, assigning cell type labels to these neurons is an open problem. Here, we develop PhysMAP, a framework that weighs multiple electrophysiological modalities simultaneously in an unsupervised manner and obtain an interpretable representation that separates neurons by cell type. PhysMAP is superior to any single electrophysiological modality in identifying neuronal cell types such as excitatory pyramidal, PV + interneurons, and SOM + interneurons with high confidence in both juxtacellular and extracellular recordings and from multiple areas of the mouse brain. PhysMAP built on ground truth data can be used for classifying cell types in new and existing electrophysiological datasets, and thus facilitate simultaneous assessment of the coordinated dynamics of multiple neuronal cell types during behavior.
0
Citation2
0
Save
17

Multi-regional module-based signal transmission in mouse visual cortex

Xiaoxuan Jia et al.Aug 31, 2020
+4
S
J
X
Abstract The visual cortex is organized hierarchically, but the presence of extensive recurrent and parallel pathways make it challenging to decipher how signals flow between neuronal populations. Here, we tracked the flow of spiking activity recorded from six interconnected levels of the mouse visual hierarchy. By analyzing leading and lagging spike-timing relationships among pairs of simultaneously recorded neurons, we created a cellular-scale directed network graph. Using a module-detection algorithm to cluster neurons based on shared connectivity patterns, we uncovered two multi-regional communication modules distributed across the hierarchy. The direction of signal flow between and within these modules, differences in layer and area distributions, and distinct temporal dynamics suggest that one module is positioned to transmit feedforward sensory signals, whereas the other integrates inputs for recurrent processing. These results suggest that multi-regional functional modules may be a fundamental feature of organization beyond cortical areas that supports signal propagation across hierarchical recurrent networks.
17
Citation1
0
Save
0

A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas

Joshua Siegle et al.Oct 16, 2019
+87
Y
A
J
The mammalian visual system, from retina to neocortex, has been extensively studied at both anatomical and functional levels. Anatomy indicates the corticothalamic system is hierarchical, but characterization of cellular-level functional interactions across multiple levels of this hierarchy is lacking, partially due to the challenge of simultaneously recording activity across numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory ) that surveys spiking from units in six cortical and two thalamic regions responding to a battery of visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas . Classical functional measures of hierarchy, including visual response latency, receptive field size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide a foundation for understanding coding and dynamics in the mouse corticothalamic visual system.