JM
John Murray
Author with expertise in Analysis of Brain Functional Connectivity Networks
Yale University, Dartmouth College, Brain (Germany)
+ 7 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
36
(53% Open Access)
Cited by:
322
h-index:
54
/
i10-index:
125
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor

Katrin Preller et al.Jun 26, 2024
+9
J
J
K
Background: Lysergic acid diethylamide (LSD) has agonist activity at various serotonin (5-HT) and dopamine receptors. Despite the therapeutic and scientific interest in LSD, specific receptor contributions to its neurobiological effects remain unknown. Methods: We therefore conducted a double-blind, randomized, counterbalanced, cross-over studyduring which 24 healthy human participants received either (i) placebo+placebo, (ii) placebo+LSD (100 µg po), or (iii) Ketanserin, a selective 5-HT2A receptor antagonist,+LSD. We quantified resting-state functional connectivity via a data-driven global brain connectivity method and compared it to cortical gene expression maps. Results: LSD reduced associative, but concurrently increased sensory-somatomotor brain-wide and thalamic connectivity. Ketanserin fully blocked the subjective and neural LSD effects. Whole-brain spatial patterns of LSD effects matched 5-HT2A receptor cortical gene expression in humans. Conclusions: Together, these results strongly implicate the 5-HT2A receptor in LSD’s neuropharmacology. This study therefore pinpoints the critical role of 5-HT2A in LSD’s mechanism, which informs its neurobiology and guides rational development of psychedelic-based therapeutics. Funding: Funded by the Swiss National Science Foundation, the Swiss Neuromatrix Foundation, the Usona Institute, the NIH, the NIAA, the NARSAD Independent Investigator Grant, the Yale CTSA grant, and the Slovenian Research Agency. Clinical trial number: NCT02451072 .
0
Citation276
0
Save
106

Spatial and temporal autocorrelation weave complexity in brain networks

Maxwell Shinn et al.Oct 24, 2023
+13
L
A
M
High-throughput experimental methods in neuroscience have led to an explosion of techniques for measuring complex interactions and multi-dimensional patterns. However, whether sophisticated measures of emergent phenomena can be traced back to simpler low-dimensional statistics is largely unknown. To explore this question, we examine resting state fMRI (rs-fMRI) data using complex topology measures from network neuroscience. We show that spatial and temporal autocorrelation are reliable statistics which explain numerous measures of network topology. Surrogate timeseries with subject-matched spatial and temporal autocorrelation capture nearly all reliable individual and regional variation in these topology measures. Network topology changes during aging are driven by spatial autocorrelation, and multiple serotonergic drugs causally induce the same topographic change in temporal autocorrelation. This reductionistic interpretation of widely-used complexity measures may help link them to neurobiology.
106
Citation17
0
Save
1

QuNex – An Integrative Platform for Reproducible Neuroimaging Analytics

Jie Ji et al.Oct 24, 2023
+16
C
J
J
Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration (1–3), particularly across multiple modalities and species. Specifically, researchers often have to rely on siloed approaches which limit reproducibility, with idiosyncratic data organization and limited software interoperability. To address these challenges, we have developed Quantitative Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-to-end processing and analytics. QuNex provides several novel functionalities for neuroimaging analyses, including a “turnkey” command for the reproducible deployment of custom workflows, from onboarding raw data to generating analytic features. The platform enables inter-operable integration of multi-modal, community-developed neuroimaging software through an extension framework with a software development kit (SDK) for seamless integration of community tools. Critically, it supports high-throughput, parallel processing in high-performance compute environments, either locally or in the cloud. Notably, QuNex has successfully processed over 10,000 scans across neuroimaging consortia (4), including multiple clinical datasets. Moreover, QuNex enables integration of human and non-human workflows via a cohesive translational platform. Collectively, this effort stands to significantly impact neuroimaging method integration across acquisition approaches, pipelines, datasets, computational environments, and species. Building on this platform will enable more rapid, scalable, and reproducible impact of neuroimaging technology across health and disease.
1
Citation6
0
Save
0

Generative modeling of brain maps with spatial autocorrelation

Joshua Burt et al.May 7, 2020
+2
M
M
J
Abstract Studies of large-scale brain organization have revealed interesting relationships between spatial gradients in brain maps across multiple modalities. Evaluating the significance of these findings requires establishing statistical expectations under a null hypothesis of interest. Through generative modeling of synthetic data that instantiate a specific null hypothesis, quantitative benchmarks can be derived for arbitrarily complex statistical measures. Here, we present a generative null model, provided as an open-access software platform, that generates surrogate maps with spatial autocorrelation (SA) matched to SA of a target brain map. SA is a prominent and ubiquitous property of brain maps that violates assumptions of independence in conventional statistical tests. Our method can simulate surrogate brain maps, constrained by empirical data, that preserve the SA of cortical, subcortical, parcellated, and dense brain maps. We characterize how SA impacts p -values in pairwise brain map comparisons. Furthermore, we demonstrate how SA-preserving surrogate maps can be used in gene ontology enrichment analyses to test hypotheses of interest related to brain map topography. Our findings demonstrate the utility of SA-preserving surrogate maps for hypothesis testing in complex statistical analyses, and underscore the need to disambiguate meaningful relationships from chance associations in studies of large-scale brain organization.
1

Anatomical and Functional Gradients Shape Dynamic Functional Connectivity in the Human Brain

Xiangwei Kong et al.Oct 24, 2023
+8
C
R
X
Abstract Large-scale biophysical circuit models can provide mechanistic insights into the fundamental micro-scale and macro-scale properties of brain organization that shape complex patterns of spontaneous brain activity. By allowing local synaptic properties to vary across brain regions, recent large-scale circuit models have demonstrated better fit to empirical observations, such as inter-regional synchrony averaged over several minutes, i.e. static functional connectivity (FC). However, most previous models do not capture how inter-regional synchrony patterns vary over timescales of seconds, i.e., time-varying FC dynamics. Here we developed a spatially-heterogeneous large-scale dynamical circuit model that allowed for variation in local circuit properties across the human cortex. We showed that parameterizing local circuit properties with both anatomical and functional gradients was necessary for generating realistic static and dynamical properties of resting-state fMRI activity. Furthermore, empirical and simulated FC dynamics demonstrated remarkably similar sharp transitions in FC patterns, suggesting the existence of multiple attractors. We found that time-varying regional fMRI amplitude tracked multi-stability in FC dynamics. Causal manipulation of the large-scale circuit model suggested that sensory-motor regions were a driver of FC dynamics. Finally, the spatial distribution of sensory-motor drivers matched the principal gradient of gene expression that encompassed certain interneuron classes, suggesting that heterogeneity in excitation-inhibition balance might shape multi-stability in FC dynamics.
2

Ketamine induces multiple individually distinct whole-brain functional connectivity signatures

Flora Moujaes et al.Oct 24, 2023
+23
M
J
F
Background Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects. Methods We conducted a double-blind placebo-controlled study in which 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hour). We quantified resting-state functional connectivity via data-driven global brain connectivity, related it to individual ketamine-induced symptom variation, and compared it to cortical gene expression targets. Results We found that: i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, implicating the role of SST and PVALB interneurons in ketamine’s acute effects; and iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level. Conclusions Collectively, these findings support the possibility for developing individually precise pharmacological biomarkers for treatment selection in psychiatry. Funding This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420); Swiss Neuromatrix Foundation (Grant No. 2016–0111m Grant No. 2015 – 010); Swiss National Science Foundation under the frame-work of Neuron Cofund (Grant No. 01EW1908), Usona Institute (2015 – 2056).
2
Citation3
0
Save
13

Transcriptomics-informed large-scale cortical model captures topography of pharmacological neuroimaging effects of LSD

Joshua Burt et al.Oct 24, 2023
+5
M
K
J
Abstract Psychoactive drugs can transiently perturb brain physiology while preserving brain structure. The role of physiological state in shaping neural function can therefore be investigated through neuroimaging of pharmacologically-induced effects. This paradigm has revealed that neural and experiential effects of lysergic acid diethylamide (LSD) are attributable to its agonist activity at the serotonin-2A receptor. Here, we integrate brainwide transcriptomics with biophysically-based large-scale circuit modeling to simulate acute neuromodulatory effects of LSD on human cortical dynamics. Our model captures the topographic effects of LSD-induced changes in cortical BOLD functional connectivity. These findings suggest that serotonin-2A-mediated modulation of pyramidal cell gain is the circuit mechanism through which LSD alters cortical functional topography. Individual-subject fitting reveals that the model captures patterns of individual neural differences in drug response that predict altered states of consciousness. This work establishes a framework for linking molecular-level manipulations to salient changes in brain function, with implications for precision medicine.
13
Citation3
0
Save
129

PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks

David Brandfonbrener et al.Oct 24, 2023
J
A
D
Abstract Task-trained artificial recurrent neural networks (RNNs) provide a computational modeling framework of increasing interest and application in computational, systems, and cognitive neuroscience. RNNs can be trained, using deep learning methods, to perform cognitive tasks used in animal and human experiments, and can be studied to investigate potential neural representations and circuit mechanisms underlying cognitive computations and behavior. Widespread application of these approaches within neuroscience has been limited by technical barriers in use of deep learning software packages to train network models. Here we introduce PsychRNN, an accessible, flexible, and extensible Python package for training RNNs on cognitive tasks. Our package is designed for accessibility, for researchers to define tasks and train RNN models using only Python and NumPy without requiring knowledge of deep learning software. The training backend is based on TensorFlow and is readily extensible for researchers with TensorFlow knowledge to develop projects with additional customization. PsychRNN implements a number of specialized features to support applications in systems and cognitive neuroscience. Users can impose neurobiologically relevant constraints on synaptic connectivity patterns. Furthermore, specification of cognitive tasks has a modular structure, which facilitates parametric variation of task demands to examine their impact on model solutions. PsychRNN also enables task shaping during training, or curriculum learning, in which tasks are adjusted in closed-loop based on performance. Shaping is ubiquitous in training of animals in cognitive tasks, and PsychRNN allows investigation of how shaping trajectories impact learning and model solutions. Overall, the PsychRNN framework facilitates application of trained RNNs in neuroscience research. Visual Abstract Example workflow for using PsychRNN. First, the task of interest is defined, and a recurrent neural network model is trained to perform the task, optionally with neurobiologically informed constraints on the network. After the network is trained, the researchers can investigate network properties including the synaptic connectivity patterns and the dynamics of neural population activity during task execution, and other studies, e.g. those on perturbations, can be explored. The dotted line shows the possible repetition of this cycle with one network, which allows investigation of training effects of task shaping, or curriculum learning, for closed-loop training of the network on a progression of tasks. Significance Statement Artificial recurrent neural network (RNN) modeling is of increasing interest within computational, systems, and cognitive neuroscience, yet its proliferation as a computational tool within the field has been limited due to technical barriers in use of specialized deep-learning software. PsychRNN provides an accessible, flexible, and powerful framework for training RNN models on cognitive tasks. Users can define tasks and train models using the Python-based interface which enables RNN modeling studies without requiring user knowledge of deep learning software. PsychRNN’s modular structure facilitates task specification and incorporation of neurobiological constraints, and supports extensibility for users with deep learning expertise. PsychRNN’s framework for RNN modeling will increase accessibility and reproducibility of this approach across neuroscience subfields.
0

Mapping Brain-Behavior Space Relationships Along the Psychosis Spectrum

Jie Ji et al.Oct 24, 2023
+12
C
M
J
Abstract Difficulties in advancing effective patient-specific therapies for psychiatric disorders highlight a need to develop a stable neurobiologically-grounded mapping between neural and symptom variation. This gap is particularly acute for psychosis-spectrum disorders (PSD). Here, in a sample of 436 cross-diagnostic PSD patients, we derived and replicated a dimensionality-reduced symptom space across hallmark psychopathology symptoms and cognitive deficits. In turn, these symptom axes mapped onto distinct, reproducible brain maps. Critically, we found that multivariate brain-behavior mapping techniques (e.g. canonical correlation analysis) do not produce stable results. Instead, we show that a univariate brain-behavioral space (BBS) can resolve stable individualized prediction. Finally, we show a proof-of-principle framework for relating personalized BBS metrics with molecular targets via serotonin and glutamate receptor manipulations and gene expression maps. Collectively, these results highlight a stable and data-driven BBS mapping across PSD, which offers an actionable path that can be iteratively optimized for personalized clinical biomarker endpoints.
0
Citation2
0
Save
10

Transient neuronal suppression for exploitation of new sensory evidence

Maxwell Shinn et al.Oct 24, 2023
H
J
D
M
Abstract In noisy but stationary environments, decisions should be based on the temporal integration of sequentially sampled evidence. This strategy has been supported by many behavioral studies and is qualitatively consistent with neural activity in multiple brain areas. By contrast, decision-making in the face of non-stationary sensory evidence remains poorly understood. Here, we trained monkeys to identify the dominant color of a dynamically refreshed bicolor patch that becomes informative after a variable delay. Animals' behavioral responses were briefly suppressed after evidence changes, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to that frequently observed after stimulus onset. Generalized drift-diffusion models revealed consistency of behavior and neural activity with brief suppression of motor output, but not with pausing or resetting of evidence accumulation. These results suggest that momentary arrest of motor preparation is an important component of dynamic perceptual decision making.
10
Citation1
0
Save
Load More