JX
Jiangshan Xu
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
BGI Group (China), Southwest University of Science and Technology, Zhejiang Lab
+ 3 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
67
h-index:
16
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A portable and cost-effective microfluidic system for massively parallel single-cell transcriptome profiling

Chuanyu Liu et al.May 6, 2020
+34
F
T
C
Abstract Single-cell technologies are becoming increasingly widespread and have been revolutionizing our understanding of cell identity, state, diversity and function. However, current platforms can be slow to apply to large-scale studies and resource-limited clinical arenas due to a variety of reasons including cost, infrastructure, sample quality and requirements. Here we report DNBelab C4 (C4), a negative pressure orchestrated, portable and cost-effective device that enables high-throughput single-cell transcriptional profiling. C4 system can efficiently allow discrimination of species-specific cells at high resolution and dissect tissue heterogeneity in different organs, such as murine lung and cerebral cortex. Finally, we show that the C4 system is comparable to existing platforms but has huge benefits in cost and portability and, as such, it will be of great interest for the wider scientific community.
47

Spatially-resolved transcriptomics analyses of invasive fronts in solid tumors

Jiayan Yan et al.Oct 24, 2023
+35
F
Y
J
Abstract Solid tumors are complex ecosystems, and heterogeneity is the major challenge for overcoming tumor relapse and metastasis. Uncovering the spatial heterogeneity of cell types and functional states in tumors is essential for developing effective treatment, especially in invasive fronts of tumor, the most active region for tumor cells infiltration and invasion. We firstly used SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq) with a nanoscale resolution to characterize the tumor microenvironment of intrahepatic cholangiocarcinoma (ICC). Enrichment of distinctive immune cells, suppressive immune microenvironment and metabolic reprogramming of tumor cells were identified in the 500µm-wide zone centered bilaterally on the tumor boundary, namely invasive fronts of tumor. Furthermore, we found the damaged states of hepatocytes with overexpression of Serum Amyloid A (SAA) in invasive fronts, recruiting macrophages for facilitating further tumor invasion, and thus resulting in a worse prognosis. We also confirmed these findings in hepatocellular carcinoma and other liver metastatic cancers. Our work highlights the remarkable potential of high-resolution-spatially resolved transcriptomic approaches to provide meaningful biological insights for comprehensively dissecting the tumor ecosystem and guiding the development of novel therapeutic strategies for solid tumors.
32

Single-cell Stereo-seq enables cell type-specific spatial transcriptome characterization in Arabidopsis leaves

Keke Xia et al.Oct 24, 2023
+18
J
H
K
Summary Understanding the complex functions of plant leaves requires spatially resolved gene expression profiling with single-cell resolution. However, although in situ gene expression profiling technologies have been developed, this goal has not yet been achieved. Here, we present the first in situ single-cell transcriptome profiling in plant, scStereo-seq (single-cell SpaTial Enhanced REsolution Omics-sequencing), which enabled the bona fide single-cell spatial transcriptome of Arabidopsis leaves. We successfully characterized subtle but significant transcriptomic differences between upper and lower epidermal cells. Furthermore, with high-resolution location information, we discovered the cell type-specific spatial gene expression gradients from main vein to leaf edge. By reconstructing those spatial gradients, we show for the first time the distinct spatial developmental trajectories of vascular cells and guard cells. Our findings show the importance of incorporating spatial information for answering complex biological questions in plant, and scStereo-seq offers a powerful single cell spatially resolved transcriptomic strategy for plant biology.
32
Citation6
0
Save
9

Spatially resolved gene regulatory and disease vulnerability map of the adult Macaque cortex

Ying Lei et al.Oct 24, 2023
+46
Z
M
Y
Abstract Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell chromatin accessibility (single-cell ATAC) and transcriptomic data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult cynomolgus monkey brain, and integrated this dataset with Stereo-seq (Spatio-Temporal Enhanced REsolution Omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex.
9
Paper
Citation1
0
Save
0

An ATAC-seq atlas of chromatin accessibility in mouse tissues

Chuanyu Liu et al.May 6, 2020
+16
X
M
C
The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) is a fundamental epigenomics approach and has been widely used in profiling the chromatin accessibility dynamics in multiple species. A comprehensive reference of ATAC-seq datasets for mammalian tissues is important for the understanding of regulatory specificity and developmental abnormality caused by genetic or environmental alterations. Here, we report an adult mouse ATAC-seq atlas by producing a total of 66 ATAC-seq profiles from 20 primary tissues of both male and female mice. The ATAC-seq read enrichment, fragment size distribution, and reproducibility between replicates demonstrated the high quality of the full dataset. We identified a total of 296,574 accessible elements, of which 26,916 showed tissue-specific accessibility. Further, we identified key transcription factors specific to distinct tissues and found that the enrichment of each motif reflects the developmental similarities across tissues. In summary, our study provides an important resource on the mouse epigenome and will be of great importance to various scientific disciplines such as development, cell reprogramming, and genetic disease.
1

High-resolution spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae

Mingyue Wang et al.Oct 24, 2023
+20
T
Q
M
SUMMARY Drosophila has long been a successful model organism in multiple fields such as genetics and developmental biology. Drosophila genome is relatively smaller and less redundant, yet largely conserved with mammals, making it a productive model in studies of embryogenesis, cell signaling, disease mechanisms, etc. Spatial gene expression pattern is critical for understanding of complex signaling pathways and cell-cell interactions, whereas temporal gene expression changes need to be tracked during highly dynamic activities such as tissue development and disease progression. Systematic studies in Drosophila as a whole are still impeded by lack of these spatiotemporal transcriptomic information. Drosophila embryos and tissues are of relatively small size, limiting the application of current technologies to comprehensively resolve their spatiotemporal gene expression patterns. Here, utilizing SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq), we dissected the spatiotemporal transcriptomic changes of developing Drosophila with high resolution and sensitivity. Our data recapitulated the spatial transcriptomes of embryonic and larval development in Drosophila . With these data, we identified known and previously undetected subregions in several tissues during development, and revealed known and potential gene regulatory networks of transcription factors within their topographic background. We further demonstrated that Stereo-seq data can be used for 3D reconstruction of Drosophila embryo spatial transcriptomes. Our data provides Drosophila research community with useful resources of spatiotemporally resolved transcriptomic information across developmental stages.
231

Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball patterned arrays

Ao Chen et al.Oct 11, 2023
+56
M
S
A
SUMMARY Spatially resolved transcriptomic technologies are promising tools to study cell fate decisions in a physical microenvironment, which is fundamental for enhancing our knowledge of mammalian development. However, the imbalance between resolution, transcript capture and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation mammalian embryos. Here, we combined DNA nanoball (DNB) patterned arrays and tissue RNA capture to create SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq). This approach allows transcriptomic profiling of large histological sections with high resolution and sensitivity. We have applied Stereo-seq to study the kinetics and directionality of transcriptional variation in a time course of mouse organogenesis. We used this information to gain insight into the molecular basis of regional specification, neuronal migration and differentiation in the developing brain. Furthermore, we mapped the expression of a panel of developmental disease-related loci on our global transcriptomic maps to define the spatiotemporal windows of tissue vulnerability. Our panoramic atlas constitutes an essential resource to investigate longstanding questions concerning normal and abnormal mammalian development.
1

Cell transcriptomic atlas of the non-human primate Macaca fascicularis

Lei Han et al.Oct 24, 2023
+74
C
X
L
Studying tissue composition and function in non-human primates (NHP) is crucial to understand the nature of our own species. Here, we present a large-scale single-cell and single-nucleus transcriptomic atlas encompassing over one million cells from 43 tissues from the adult NHP Macaca fascicularis . This dataset provides a vast, carefully annotated, resource to study a species phylogenetically close to humans. As proof of principle, we have reconstructed the cell-cell interaction networks driving Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases and intersected our data with human genetic disease orthologous coordinates to identify both expected and unexpected associations. Our Macaca fascicularis cell atlas constitutes an essential reference for future single-cell studies in human and NHP.
35

Single-cell atlas of a non-human primate reveals new pathogenic mechanisms of COVID-19

Lei Han et al.Oct 13, 2023
+37
C
X
L
ABSTRACT Stopping COVID-19 is a priority worldwide. Understanding which cell types are targeted by SARS-CoV-2 virus, whether interspecies differences exist, and how variations in cell state influence viral entry is fundamental for accelerating therapeutic and preventative approaches. In this endeavor, we profiled the transcriptome of nine tissues from a Macaca fascicularis monkey at single-cell resolution. The distribution of SARS-CoV-2 facilitators, ACE2 and TMRPSS2, in different cell subtypes showed substantial heterogeneity across lung, kidney, and liver. Through co-expression analysis, we identified immunomodulatory proteins such as IDO2 and ANPEP as potential SARS-CoV-2 targets responsible for immune cell exhaustion. Furthermore, single-cell chromatin accessibility analysis of the kidney unveiled a plausible link between IL6-mediated innate immune responses aiming to protect tissue and enhanced ACE2 expression that could promote viral entry. Our work constitutes a unique resource for understanding the physiology and pathophysiology of two phylogenetically close species, which might guide in the development of therapeutic approaches in humans. Bullet points We generated a single-cell transcriptome atlas of 9 monkey tissues to study COVID-19. ACE2 + TMPRSS2 + epithelial cells of lung, kidney and liver are targets for SARS-CoV-2. ACE2 correlation analysis shows IDO2 and ANPEP as potential therapeutic opportunities. We unveil a link between IL6, STAT transcription factors and boosted SARS-CoV-2 entry.
0

Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity

Longqi Liu et al.May 6, 2020
+34
A
C
L
Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a technique for simultaneously assaying chromatin accessibility and the transcriptome within the same single cell. By applying our integrated approach to multiple cancer cell lines, we discovered genomic loci with coordinated epigenomic and transcriptomic variability. In addition, decomposition of combined single-cell chromatin accessibility and gene expression features by a non-negative matrix factorization (NMF) based method identified signatures reflecting cell type specificity and revealed a profound regulatory relationship between the two layers of omics. We further characterized subpopulations associated with distinct regulatory patterns within patient-derived xenograft models and discovered epigenomic and transcriptomic clues that drive tumor heterogeneity. The ability to obtain these two layers of omics data will help provide more accurate definitions of "single cell states" and enable the deconvolution of regulatory heterogeneity from complex cell populations.
Load More