FP
Florian Privé
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
23
(78% Open Access)
Cited by:
788
h-index:
19
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

LDpred2: better, faster, stronger

Florian Privé et al.Dec 1, 2020
Abstract Motivation Polygenic scores have become a central tool in human genetics research. LDpred is a popular method for deriving polygenic scores based on summary statistics and a matrix of correlation between genetic variants. However, LDpred has limitations that may reduce its predictive performance. Results Here, we present LDpred2, a new version of LDpred that addresses these issues. We also provide two new options in LDpred2: a ‘sparse’ option that can learn effects that are exactly 0, and an ‘auto’ option that directly learns the two LDpred parameters from data. We benchmark predictive performance of LDpred2 against the previous version on simulated and real data, demonstrating substantial improvements in robustness and predictive accuracy compared to LDpred1. We then show that LDpred2 also outperforms other polygenic score methods recently developed, with a mean AUC over the 8 real traits analyzed here of 65.1%, compared to 63.8% for lassosum, 62.9% for PRS-CS and 61.5% for SBayesR. Note that LDpred2 provides more accurate polygenic scores when run genome-wide, instead of per chromosome. Availability and implementation LDpred2 is implemented in R package bigsnpr. Supplementary information Supplementary data are available at Bioinformatics online.
1
Citation401
0
Save
0

Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr

Florian Privé et al.Mar 29, 2018
Abstract Motivation Genome-wide datasets produced for association studies have dramatically increased in size over the past few years, with modern datasets commonly including millions of variants measured in dozens of thousands of individuals. This increase in data size is a major challenge severely slowing down genomic analyses, leading to some software becoming obsolete and researchers having limited access to diverse analysis tools. Results Here we present two R packages, bigstatsr and bigsnpr, allowing for the analysis of large scale genomic data to be performed within R. To address large data size, the packages use memory-mapping for accessing data matrices stored on disk instead of in RAM. To perform data pre-processing and data analysis, the packages integrate most of the tools that are commonly used, either through transparent system calls to existing software, or through updated or improved implementation of existing methods. In particular, the packages implement fast and accurate computations of principal component analysis and association studies, functions to remove single nucleotide polymorphisms in linkage disequilibrium and algorithms to learn polygenic risk scores on millions of single nucleotide polymorphisms. We illustrate applications of the two R packages by analyzing a case–control genomic dataset for celiac disease, performing an association study and computing polygenic risk scores. Finally, we demonstrate the scalability of the R packages by analyzing a simulated genome-wide dataset including 500 000 individuals and 1 million markers on a single desktop computer. Availability and implementation https://privefl.github.io/bigstatsr/ and https://privefl.github.io/bigsnpr/. Supplementary information Supplementary data are available at Bioinformatics online.
0
Citation291
0
Save
139

Polygenic scoring accuracy varies across the genetic ancestry continuum in all human populations

Yi Ding et al.Sep 29, 2022
Abstract Polygenic scores (PGS) have limited portability across different groupings of individuals (e.g., by genetic ancestries and/or social determinants of health), preventing their equitable use. PGS portability has typically been assessed using a single aggregate population-level statistic (e.g., R 2 ), ignoring inter-individual variation within the population. Here we evaluate PGS accuracy at individual-level resolution, independent of its annotated genetic ancestries. We show that PGS accuracy varies between individuals across the genetic ancestry continuum in all ancestries, even within traditionally “homogeneous” genetic ancestry clusters. Using a large and diverse Los Angeles biobank (ATLAS, N= 36,778) along with the UK Biobank (UKBB, N= 487,409), we show that PGS accuracy decreases along a continuum of genetic ancestries in all considered populations and the trend is well-captured by a continuous measure of genetic distance (GD) from the PGS training data; Pearson correlation of −0.95 between GD and PGS accuracy averaged across 84 traits. When applying PGS models trained in UKBB “white British” individuals to European-ancestry individuals of ATLAS, individuals in the highest GD decile have 14% lower accuracy relative to the lowest decile; notably the lowest GD decile of Hispanic/Latino American ancestry individuals showed similar PGS performance as the highest GD decile of European ancestry ATLAS individuals. GD is significantly correlated with PGS estimates themselves for 82 out of 84 traits, further emphasizing the importance of incorporating the continuum of genetic ancestry in PGS interpretation. Our results highlight the need for moving away from discrete genetic ancestry clusters towards the continuum of genetic ancestries when considering PGS and their applications.
139
Citation14
0
Save
82

Large uncertainty in individual PRS estimation impacts PRS-based risk stratification

Yi Ding et al.Dec 1, 2020
Abstract Large-scale genome-wide association studies have enabled polygenic risk scores (PRS), which estimate the genetic value of an individual for a given trait. Since PRS accuracy is typically assessed using cohort-level metrics (e.g., R 2 ), uncertainty in PRS estimates at individual level remains underexplored. Here we show that Bayesian PRS methods can estimate the variance of an individual’s PRS and can yield well-calibrated credible intervals for the genetic value of a single individual. For real traits in the UK Biobank (N=291,273 unrelated “white British”) we observe large variance in individual PRS estimates which impacts interpretation of PRS-based stratification; for example, averaging across 13 traits, only 0.8% (s.d. 1.6%) of individuals with PRS point estimates in the top decile have their entire 95% credible intervals fully contained in the top decile. We provide an analytical estimator for individual PRS variance—a function of SNP-heritability, number of causal SNPs, and sample size—and observe high concordance with individual variances estimated via posterior sampling. Finally as an example of the utility of individual PRS uncertainties, we explore a probabilistic approach to PRS-based stratification that estimates the probability of an individual’s genetic value to be above a prespecified threshold. Our results showcase the importance of incorporating uncertainty in individual PRS estimates into subsequent analyses.
82
Citation12
0
Save
0

Efficient implementation of penalized regression for genetic risk prediction

Florian Privé et al.Aug 29, 2018
Abstract Polygenic Risk Scores (PRS) consist in combining the information across many single-nucleotide polymorphisms (SNPs) in a score reflecting the genetic risk of developing a disease. PRS might have a major impact on public health, possibly allowing for screening campaigns to identify high-genetic risk individuals for a given disease. The “Clumping+Thresholding” (C+T) approach is the most common method to derive PRS. C+T uses only univariate genome-wide association studies (GWAS) summary statistics, which makes it fast and easy to use. However, previous work showed that jointly estimating SNP effects for computing PRS has the potential to significantly improve the predictive performance of PRS as compared to C+T. In this paper, we present an efficient method to jointly estimate SNP effects, allowing for practical application of penalized logistic regression (PLR) on modern datasets including hundreds of thousands of individuals. Moreover, our implementation of PLR directly includes automatic choices for hyper-parameters. The choice of hyper-parameters for a predictive model is very important since it can dramatically impact its predictive performance. As an example, AUC values range from less than 60% to 90% in a model with 30 causal SNPs, depending on the p-value threshold in C+T. We compare the performance of PLR, C+T and a derivation of random forests using both real and simulated data. PLR consistently achieves higher predictive performance than the two other methods while being as fast as C+T. We find that improvement in predictive performance is more pronounced when there are few effects located in nearby genomic regions with correlated SNPs; for instance, AUC values increase from 83% with the best prediction of C+T to 92.5% with PLR. We confirm these results in a data analysis of a case-control study for celiac disease where PLR and the standard C+T method achieve AUC of 89% and of 82.5%. In conclusion, our study demonstrates that penalized logistic regression can achieve more discriminative polygenic risk scores, while being applicable to large-scale individual-level data thanks to the implementation we provide in the R package bigstatsr.
0
Citation6
0
Save
33

Inferring disease architecture and predictive ability with LDpred2-auto

Florian Privé et al.Oct 12, 2022
Abstract LDpred2 is a widely used Bayesian method for building polygenic scores (PGS). LDpred2-auto can infer the two parameters from the LDpred model, the SNP heritability h 2 and polygenicity p , so that it does not require an additional validation dataset to choose best-performing parameters. The main aim of this paper is to properly validate the use of LDpred2-auto for inferring multiple genetic parameters. Here, we present a new version of LDpred2-auto that adds an optional third parameter α to its model, for modeling negative selection. We then validate the inference of these three parameters (or two, when using the previous model). We also show that LDpred2-auto provides per-variant probabilities of being causal that are well calibrated, and can therefore be used for fine-mapping purposes. We also derive a new formula to infer the out-of-sample predictive performance r 2 of the resulting PGS directly from the Gibbs sampler of LDpred2-auto. Finally, we extend the set of HapMap3 variants recommended to use with LDpred2 with 37% more variants to improve the coverage of this set, and show that this new set of variants captures 12% more heritability and provides 6% more predictive performance, on average, in UK Biobank analyses.
33
Citation6
0
Save
0

Making the most of Clumping and Thresholding for polygenic scores

Florian Privé et al.May 30, 2019
Abstract Polygenic prediction has the potential to contribute to precision medicine. Clumping and Thresh-olding (C+T) is a widely used method to derive polygenic scores. When using C+T, it is common to test several p-value thresholds to maximize predictive ability of the derived polygenic scores. Along with this p-value threshold, we propose to tune three other hyper-parameters for C+T. We implement an efficient way to derive thousands of different C+T polygenic scores corresponding to a grid over four hyper-parameters. For example, it takes a few hours to derive 123,200 different C+T scores for 300K individuals and 1M variants on a single node with 16 cores. We find that optimizing over these four hyper-parameters improves the predictive performance of C+T in both simulations and real data applications as compared to tuning only the p-value threshold. A particularly large increase can be noted when predicting depression status, from an AUC of 0.557 (95% CI: [0.544-0.569]) when tuning only the p-value threshold in C+T to an AUC of 0.592 (95% CI: [0.580-0.604]) when tuning all four hyper-parameters we propose for C+T. We further propose Stacked Clumping and Thresholding (SCT), a polygenic score that results from stacking all derived C+T scores. Instead of choosing one set of hyper-parameters that maximizes prediction in some training set, SCT learns an optimal linear combination of all C+T scores by using an efficient penalized regression. We apply SCT to 8 different case-control diseases in the UK biobank data and find that SCT substantially improves prediction accuracy with an average AUC increase of 0.035 over standard C+T.
0
Citation5
0
Save
1

Accounting for age-of-onset and family history improves power in genome-wide association studies

Emil Pedersen et al.Apr 21, 2021
Abstract Genome-wide association studies (GWAS) have revolutionized human genetics, allowing researchers to identify thousands of disease-related genes and possible drug targets. However, case-control status does not account for the fact that not all controls may have lived through their period of risk for the disorder of interest. This can be quantified by examining the age-of-onset distribution and the age of the controls or the age-of-onset for cases. The age-of-onset distribution may also depend on information such as sex and birth year. In addition, family history is not routinely included in the assessment of control status. Here we present LT-FH++, an extension of the liability threshold model conditioned on family history (LT-FH), that jointly accounts for age-of-onset and sex, as well as family history. Using simulations, we show that, when family history and the age-of-onset distribution are available, the proposed approach yields large power gains over both LT-FH and genome-wide association study by proxy (GWAX). We applied our method to four psychiatric disorders available in the iPSYCH data, and to mortality in the UK Biobank, finding 20 genome-wide significant associations with LT-FH++, compared to 10 for LT-FH and 8 for a standard case-control GWAS. As more genetic data with linked electronic health records become available to researchers, we expect methods that account for additional health information, such as LT-FH++, to become even more beneficial.
1
Citation4
0
Save
46

Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction

Clara Albiñana et al.Nov 27, 2020
Abstract The accuracy of polygenic risk scores (PRSs) to predict complex diseases increases with the training sample size. PRSs are generally derived based on summary statistics from large meta-analyses of multiple genome-wide association studies (GWAS). However, it is now common for researchers to have access to large individual-level data as well, such as the UK biobank data. To the best of our knowledge, it has not yet been explored how to best combine both types of data (summary statistics and individual-level data) to optimize polygenic prediction. The most widely used approach to combine data is the meta-analysis of GWAS summary statistics (Meta-GWAS), but we show that it does not always provide the most accurate PRS. Through simulations and using twelve real case-control and quantitative traits from both iPSYCH and UK Biobank along with external GWAS summary statistics, we compare Meta-GWAS with two alternative data-combining approaches, stacked clumping and thresholding (SCT) and Meta-PRS. We find that, when large individual-level data is available, the linear combination of PRSs (Meta-PRS) is both a simple alternative to Meta-GWAS and often more accurate.
46
Citation4
0
Save
Load More