LK
Liis Kolberg
Author with expertise in Genetic Architecture of Quantitative Traits
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
5,820
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)

Uku Raudvere et al.Apr 30, 2019
Biological data analysis often deals with lists of genes arising from various studies. The g:Profiler toolset is widely used for finding biological categories enriched in gene lists, conversions between gene identifiers and mappings to their orthologs. The mission of g:Profiler is to provide a reliable service based on up-to-date high quality data in a convenient manner across many evidence types, identifier spaces and organisms. g:Profiler relies on Ensembl as a primary data source and follows their quarterly release cycle while updating the other data sources simultaneously. The current update provides a better user experience due to a modern responsive web interface, standardised API and libraries. The results are delivered through an interactive and configurable web design. Results can be downloaded as publication ready visualisations or delimited text files. In the current update we have extended the support to 467 species and strains, including vertebrates, plants, fungi, insects and parasites. By supporting user uploaded custom GMT files, g:Profiler is now capable of analysing data from any organism. All past releases are maintained for reproducibility and transparency. The 2019 update introduces an extensive technical rewrite making the services faster and more flexible. g:Profiler is freely available at https://biit.cs.ut.ee/gprofiler.
0
Citation3,957
0
Save
0

g:Profiler—a web server for functional interpretation of gene lists (2016 update)

Jüri Reimand et al.Apr 20, 2016
Functional enrichment analysis is a key step in interpreting gene lists discovered in diverse high-throughput experiments. g:Profiler studies flat and ranked gene lists and finds statistically significant Gene Ontology terms, pathways and other gene function related terms. Translation of hundreds of gene identifiers is another core feature of g:Profiler. Since its first publication in 2007, our web server has become a popular tool of choice among basic and translational researchers. Timeliness is a major advantage of g:Profiler as genome and pathway information is synchronized with the Ensembl database in quarterly updates. g:Profiler supports 213 species including mammals and other vertebrates, plants, insects and fungi. The 2016 update of g:Profiler introduces several novel features. We have added further functional datasets to interpret gene lists, including transcription factor binding site predictions, Mendelian disease annotations, information about protein expression and complexes and gene mappings of human genetic polymorphisms. Besides the interactive web interface, g:Profiler can be accessed in computational pipelines using our R package, Python interface and BioJS component. g:Profiler is freely available at http://biit.cs.ut.ee/gprofiler/.
0
Citation1,212
0
Save
0

g:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update)

Liis Kolberg et al.May 5, 2023
Abstract g:Profiler is a reliable and up-to-date functional enrichment analysis tool that supports various evidence types, identifier types and organisms. The toolset integrates many databases, including Gene Ontology, KEGG and TRANSFAC, to provide a comprehensive and in-depth analysis of gene lists. It also provides interactive and intuitive user interfaces and supports ordered queries and custom statistical backgrounds, among other settings. g:Profiler provides multiple programmatic interfaces to access its functionality. These can be easily integrated into custom workflows and external tools, making them valuable resources for researchers who want to develop their own solutions. g:Profiler has been available since 2007 and is used to analyse millions of queries. Research reproducibility and transparency are achieved by maintaining working versions of all past database releases since 2015. g:Profiler supports 849 species, including vertebrates, plants, fungi, insects and parasites, and can analyse any organism through user-uploaded custom annotation files. In this update article, we introduce a novel filtering method highlighting Gene Ontology driver terms, accompanied by new graph visualizations providing a broader context for significant Gene Ontology terms. As a leading enrichment analysis and gene list interoperability service, g:Profiler offers a valuable resource for genetics, biology and medical researchers. It is freely accessible at https://biit.cs.ut.ee/gprofiler.
0
Citation320
0
Save
0

eQTL Catalogue: a compendium of uniformly processed human gene expression and splicing QTLs

Nurlan Kerimov et al.Jan 29, 2020
Abstract An increasing number of gene expression quantitative trait locus (eQTL) studies have made summary statistics publicly available, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and colocalisation. However, differences between these datasets, in their variants tested, allele codings, and in the transcriptional features quantified, are a barrier to their widespread use. Consequently, target genes for most GWAS signals have still not been identified. Here, we present the eQTL Catalogue ( https://www.ebi.ac.uk/eqtl/ ), a resource which contains quality controlled, uniformly recomputed QTLs from 21 eQTL studies. We find that for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies, enabling the integrative analysis of these data. Although most cis -eQTLs were shared between most bulk tissues, the analysis of purified cell types identified a greater diversity of cell-type-specific eQTLs, a subset of which also manifested as novel disease colocalisations. Our summary statistics can be downloaded by FTP, accessed via a REST API, and visualised on the Ensembl genome browser. New datasets will continuously be added to the eQTL Catalogue, enabling the systematic interpretation of human GWAS associations across many cell types and tissues.
0
Citation59
0
Save
0

Co-expression analysis reveals interpretable gene modules controlled bytrans-acting genetic variants

Liis Kolberg et al.Apr 24, 2020
Abstract Background Developing novel therapies for complex disease requires better understanding of the causal processes that contribute to disease onset and progression. Although trans -acting gene expression quantitative trait loci ( trans -eQTLs) can be a powerful approach to directly reveal cellular processes modulated by disease variants, detecting trans -eQTLs remains challenging due to their small effect sizes and large number of genes tested. However, if a single trans -eQTL controls a group of co-regulated genes, then multiple testing burden can be greatly reduced by summarising gene expression at the level of co-expression modules prior to trans -eQTL analysis. Results We analysed gene expression and genotype data from six blood cell types from 226 to 710 individuals. We inferred gene co-expression modules with five methods on the full dataset, as well as in each cell type separately. We detected a number of established co-expression module trans -eQTLs, such as the monocyte-specific associations at the IFNB1 and LYZ loci, as well as a platelet-specific ARHGEF3 locus associated with mean platelet volume. We also discovered a novel trans association near the SLC39A8 gene in LPS-stimulated monocytes. Here, we linked an early-response cis -eQTL of the SLC39A8 gene to a module of co-expressed metallothionein genes upregulated more than 20 hours later and used motif analysis to identify zinc-induced activation of the MTF1 transcription factor as a likely mediator of this effect. Conclusions Our analysis provides a rare detailed characterisation of a trans -eQTL effect cascade from a proximal cis effect to the affected signalling pathway, transcription factor, and target genes. This highlights how co-expression analysis combined with functional enrichment analysis can greatly improve the identification and prioritisation of trans -eQTLs when applied to emerging cell-type specific datasets.
0
Citation1
0
Save