AN
Anna Neumann
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
286
h-index:
22
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Natural variation in gene expression and Zika virus susceptibility revealed by villages of neural progenitor cells

Michael Wells et al.Nov 9, 2021
SUMMARY Variation in the human genome contributes to abundant diversity in human traits and vulnerabilities, but the underlying molecular and cellular mechanisms are not yet known, and will need scalable approaches to accelerate their recognition. Here, we advanced and applied an experimental platform that analyzes genetic, molecular, and phenotypic heterogeneity across cells from very many human donors cultured in a single, shared in vitro environment, with algorithms (Dropulation and Census-seq) for assigning phenotypes to individual donors. We used natural genetic variation and synthetic (CRISPR-Cas9) genetic perturbations to analyze the vulnerability of neural progenitor cells to infection with Zika virus. These analyses identified a common variant in the antiviral IFITM3 gene that regulated IFITM3 expression and explained most inter-individual variation in NPCs’ susceptibility to Zika virus infectivity. These and other approaches could provide scalable ways to recognize the impact of genes and genetic variation on cellular phenotypes. HIGHLIGHTS Measuring cellular phenotypes in iPSCs and hPSC-derived NPCs from many donors Effects of donor sex, cell source, genetic and other variables on hPSC RNA expression Natural genetic variation and synthetic perturbation screens both identify IFITM3 in NPC susceptibility to Zika virus A common genetic variant in IFITM3 explains most inter-individual variation in NPC susceptibility to Zika virus
1
Citation9
0
Save
0

A concerted neuron–astrocyte program declines in ageing and schizophrenia

Emi Ling et al.Mar 6, 2024
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.
0
Citation8
-1
Save
92

Mapping genetic effects on cellular phenotypes with “cell villages”

Jana Mitchell et al.Jun 29, 2020
Summary Tens of thousands of genetic variants shape human phenotypes, mostly by unknown cellular mechanisms. Here we describe Census-seq, a way to measure cellular phenotypes in cells from many people simultaneously. Analogous to pooled CRISPR screens but for natural variation, Census-seq associates cellular phenotypes to donors’ genotypes by quantifying the presence of each donor’s DNA in cell “villages” before and after sorting or selection for cellular traits of interest. Census-seq enables population-scale cell-biological phenotyping with low cost and high internal control. We demonstrate Census-seq through investigation of genetic effects on the SMN protein whose deficiency underlies spinal muscular atrophy (SMA). Census-seq quantified and mapped effects of many common alleles on SMN protein levels and response to SMN-targeted therapeutics, including a common, cryptic non-responder allele. We provide tools enabling population-scale cell experiments and explain how Census-seq can be used to map genetic effects on diverse cell phenotypes. Abstract Figure Highlights Census-seq reveals how inherited genetic variation affects cell phenotypes Genetic analysis of cellular traits in cell villages of >100 donors Characterizing human alleles that shape SMN protein expression and drug responses Development of protocols and software to enable cellular population genetics
0

Concerted neuron-astrocyte gene expression declines in aging and schizophrenia

Emi Ling et al.Jan 8, 2024
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a striking relationship between people’s cortical neurons and cortical astrocytes. We used single-nucleus RNA-seq to analyze the prefrontal cortex of 191 human donors ages 22-97 years, including healthy individuals and persons with schizophrenia. Latent-factor analysis of these data revealed that in persons whose cortical neurons more strongly expressed genes for synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the Synaptic Neuron- and-Astrocyte Program (SNAP). In schizophrenia and aging – two conditions that involve declines in cognitive flexibility and plasticity 1,2 – cells had divested from SNAP: astrocytes, glutamatergic (excitatory) neurons, and GABAergic (inhibitory) neurons all reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy persons of similar age, may underlie many aspects of normal human interindividual differences and be an important point of convergence for multiple kinds of pathophysiology.
1

The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia

Ralda Nehme et al.Sep 22, 2021
Abstract To study how the 22q11.2 deletion predisposes to psychiatric disease, we generated induced pluripotent stem cells from deletion carriers and controls, as well as utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Upon differentiation into neural progenitor cells, we found the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including Autism Spectrum Disorder. In more differentiated excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common (per-SNP heritability p ( τ c )= 4.2 x 10 -6 ) and rare, loss of function variants (p = 1.29×10 -12 ). These findings suggest a potential relationship between cellular states, developmental windows and susceptibility to psychiatric conditions with different ages of onset. To understand how the deletion contributed to these observed changes in gene expression, we developed and applied PPItools, which identifies the minimal protein-protein interaction network that best explains an observed set of gene expression alterations. We found that many of the genes in the 22q11.2 interval interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways that underlie the broader alterations in psychiatric risk gene expression we identified. Our findings suggest that the 22q11.2 deletion impacts genes and pathways that may converge with risk loci implicated by psychiatric genetic studies to influence disease manifestation in each deletion carrier.