PM
Patrick McTamney
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,446
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies

Masaru Kanekiyo et al.May 21, 2013
+7
H
C
M
A novel platform for vaccines has been developed using self-assembling ferritin-based nanoparticles displaying influenza virus haemagglutinin; the haemagglutinin–nanoparticle vaccine induces more broad and potent neutralizing antibodies against diverse virus strains than a licensed influenza vaccine in mice and ferrets. The efficacy of the current generation of vaccines for seasonal influenza is limited by the need to produce new vaccines — using dated and time-consuming technologies — to cope with the rapidly evolving virus. This study presents a novel approach to influenza vaccination using self-assembling ferritin-based nanoparticles fused to the native viral attachment protein, haemagglutinin. The haemagglutinin–nanoparticle vaccine is shown to induce neutralizing antibodies and to generate higher immunity against diverse viral subtypes than a licensed influenza vaccine. For example, antibodies elicited by a 1999 haemagglutinin–nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from infection by a 2007 H1N1 virus. Influenza viruses pose a significant threat to the public and are a burden on global health systems1,2. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides3. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem4,5 and the receptor binding site on the head6,7. Antibodies elicited by a 1999 haemagglutinin–nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.
0

Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection

Hadi Yassine et al.Aug 24, 2015
+17
J
W
H
0
Citation602
0
Save
33

Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail

Jinhui Dong et al.Jan 28, 2021
+32
M
X
J
The SARS-CoV-2 pandemic has led to an urgent need to understand the molecular basis for immune recognition of SARS-CoV-2 spike (S) glycoprotein antigenic sites. To define the genetic and structural basis for SARS-CoV-2 neutralization, we determined the structures of two human monoclonal antibodies COV2-2196 and COV2-2130 1 , which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor binding domain (RBD) of SARS-CoV-2. COV2-2196 forms an “aromatic cage” at the heavy/light chain interface using germline-encoded residues in complementarity determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals 1–4 . The structure of COV2-2130 reveals that an unusually long LCDR1 and HCDR3 make interactions with the opposite face of the RBD from that of COV2-2196. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the critical residues of both antibodies and identified positions of concern for possible viral escape. Nonetheless, both COV2-2196 and COV2-2130 showed strong neutralizing activity against SARS-CoV-2 strain with recent variations of concern including E484K, N501Y, and D614G substitutions. These studies reveal germline-encoded antibody features enabling recognition of the RBD and demonstrate the activity of a cocktail like AZD7442 in preventing escape from emerging variant viruses.
33
Citation66
0
Save
164

SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity

Michael Joyce et al.May 10, 2021
+56
R
W
M
The need for SARS-CoV-2 next-generation vaccines has been highlighted by the rise of variants of concern (VoC) and the long-term threat of other coronaviruses. Here, we designed and characterized four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of prefusion Spike (S), S1 and RBD. These immunogens induced robust S-binding, ACE2-inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2 in mice. A Spike-ferritin nanoparticle (SpFN) vaccine elicited neutralizing titers more than 20-fold higher than convalescent donor serum, following a single immunization, while RBD-Ferritin nanoparticle (RFN) immunogens elicited similar responses after two immunizations. Passive transfer of IgG purified from SpFN- or RFN-immunized mice protected K18-hACE2 transgenic mice from a lethal SARS-CoV-2 virus challenge. Furthermore, SpFN- and RFN-immunization elicited ACE2 blocking activity and neutralizing ID50 antibody titers >2,000 against SARS-CoV-1, along with high magnitude neutralizing titers against major VoC. These results provide design strategies for pan-coronavirus vaccine development.
164
Citation16
0
Save
221

The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 Beta (B.1.351) and other variants of concern in preclinical studies

Alexandra Spencer et al.Jun 9, 2021
+23
M
S
A
Abstract There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), high titre binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) are induced. In addition, a strong and polyfunctional T cell response was measured in these booster regimens. These data support the ongoing clinical development and testing of this new variant vaccine.
221
Citation13
0
Save
6

A Multivalent Polyomavirus Vaccine Elicits Durable Neutralizing Antibody Responses in Macaques

Alberto Peretti et al.Sep 28, 2022
+9
W
D
A
ABSTRACT In 2019, there were about 100,000 kidney transplants globally, with more than a quarter of them performed in the United States. Unfortunately, some engrafted organs are lost to polyomavirus-associated nephropathy (PyVAN) caused by BK and JC viruses (BKPyV and JCPyV). Transplant patients are routinely monitored for BKPyV viremia, which is an accepted hallmark of nascent nephropathy. If viremia is detected, a reduction in immunosuppressive therapy is standard care, but the intervention comes with increased risk of immune rejection of the engrafted organ. Recent reports have suggested that transplant recipients with high levels of polyomavirus-neutralizing antibodies are protected against PyVAN. Virus-like particle (VLP) vaccines, similar to approved human papillomaviruses vaccines, have an excellent safety record and are known to induce high levels of neutralizing antibodies associated and long-lasting protection from infection. In this study, we demonstrate that VLPs representing BKPyV genotypes I, II, and IV, as well as JCPyV genotype 2 produced in insect cells elicit robust antibody titers. In rhesus macaques, all monkeys developed neutralizing antibody titers above a previously proposed protective threshold of 10,000. A second inoculation, administered 19 weeks after priming, boosted titers to a plateau of ≥25,000 that was maintained for almost two years. No vaccine-related adverse events were observed in any macaques. A multivalent BK/JC VLP immunogen did not show inferiority compared to the single-genotype VLP immunogens. Considering these encouraging results, we believe a clinical trial administering the multivalent VLP vaccine in patients waiting to receive a kidney transplant is warranted to evaluate its ability to reduce or eliminate PyVAN. HIGHLIGHTS Recombinant virus-like particle vaccine was safely administered to rhesus macaques Vaccination generated high-titer neutralizing antibody responses Multivalent BK/JC polyomavirus vaccine was as effective as monovalent vaccines High neutralizing titers were sustained for 92 weeks without appreciable decline