AP
Alex Pollen
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(82% Open Access)
Cited by:
9,041
h-index:
36
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The genomic basis of adaptive evolution in threespine sticklebacks

Felicity Jones et al.Apr 1, 2012
Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature. A reference genome sequence for threespine sticklebacks, and re-sequencing of 20 additional world-wide populations, reveals loci used repeatedly during vertebrate evolution; multiple chromosome inversions contribute to marine-freshwater divergence, and regulatory variants predominate over coding variants in this classic example of adaptive evolution in natural environments. Threespine sticklebacks have become a powerful model for studying the molecular basis of adaptive evolution. This paper presents a high-quality reference genome sequence, along with genomes of 20 further individuals from a global set of marine and freshwater populations. Genomic analysis reveals that reuse of globally shared standing genetic variation plays an important part in repeated evolution of distinct stickleback populations, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. The data are consistent with an important role for regulatory changes during parallel evolution of marine and freshwater sticklebacks.
0
Citation1,746
0
Save
0

Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex

Alex Pollen et al.Aug 3, 2014
Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.
0
Citation899
0
Save
0

Human-specific loss of regulatory DNA and the evolution of human-specific traits

Cory McLean et al.Mar 1, 2011
A computational survey of the human genome has identified more than 500 human-specific genomic deletions that remove sequences that are highly conserved between chimpanzees and other animals. These are genomic changes that are likely to have contributed to unique features of human biology. Most of the deleted sequences are located in the non-coding regions of the genome. The human deletions are enriched near genes involved in neural development and steroid hormone signalling, consistent with previous suggestions that regulatory changes near key developmental control genes may have important roles in human evolution. Specific examples of human-specific deletions include one that affects penile anatomy and another relating to brain size. This study searched for putative regulatory mutations specific to the human lineage by looking for sequences that are highly conserved between chimpanzees and other species, but are not present in the human genome. The 500-odd human-specific deletions tend to lie in non-coding DNA stretches and near genes involved in steroid hormone signalling and neural function. This is illustrated with two examples, one of which affects penile anatomy whereas the other affects brain size. Humans differ from other animals in many aspects of anatomy, physiology, and behaviour; however, the genotypic basis of most human-specific traits remains unknown1. Recent whole-genome comparisons have made it possible to identify genes with elevated rates of amino acid change or divergent expression in humans, and non-coding sequences with accelerated base pair changes2,3,4,5. Regulatory alterations may be particularly likely to produce phenotypic effects while preserving viability, and are known to underlie interesting evolutionary differences in other species6,7,8. Here we identify molecular events particularly likely to produce significant regulatory changes in humans: complete deletion of sequences otherwise highly conserved between chimpanzees and other mammals. We confirm 510 such deletions in humans, which fall almost exclusively in non-coding regions and are enriched near genes involved in steroid hormone signalling and neural function. One deletion removes a sensory vibrissae and penile spine enhancer from the human androgen receptor (AR) gene, a molecular change correlated with anatomical loss of androgen-dependent sensory vibrissae and penile spines in the human lineage9,10. Another deletion removes a forebrain subventricular zone enhancer near the tumour suppressor gene growth arrest and DNA-damage-inducible, gamma (GADD45G)11,12, a loss correlated with expansion of specific brain regions in humans. Deletions of tissue-specific enhancers may thus accompany both loss and gain traits in the human lineage, and provide specific examples of the kinds of regulatory alterations6,7,8 and inactivation events13 long proposed to have an important role in human evolutionary divergence.
0
Citation494
0
Save
0

Zika virus cell tropism in the developing human brain and inhibition by azithromycin

Hanna Retallack et al.Nov 29, 2016
The rapid spread of Zika virus (ZIKV) and its association with abnormal brain development constitute a global health emergency. Congenital ZIKV infection produces a range of mild to severe pathologies, including microcephaly. To understand the pathophysiology of ZIKV infection, we used models of the developing brain that faithfully recapitulate the tissue architecture in early to midgestation. We identify the brain cell populations that are most susceptible to ZIKV infection in primary human tissue, provide evidence for a mechanism of viral entry, and show that a commonly used antibiotic protects cultured brain cells by reducing viral proliferation. In the brain, ZIKV preferentially infected neural stem cells, astrocytes, oligodendrocyte precursor cells, and microglia, whereas neurons were less susceptible to infection. These findings suggest mechanisms for microcephaly and other pathologic features of infants with congenital ZIKV infection that are not explained by neural stem cell infection alone, such as calcifications in the cortical plate. Furthermore, we find that blocking the glia-enriched putative viral entry receptor AXL reduced ZIKV infection of astrocytes in vitro, and genetic knockdown of AXL in a glial cell line nearly abolished infection. Finally, we evaluate 2,177 compounds, focusing on drugs safe in pregnancy. We show that the macrolide antibiotic azithromycin reduced viral proliferation and virus-induced cytopathic effects in glial cell lines and human astrocytes. Our characterization of infection in the developing human brain clarifies the pathogenesis of congenital ZIKV infection and provides the basis for investigating possible therapeutic strategies to safely alleviate or prevent the most severe consequences of the epidemic.
0
Citation472
0
Save
0

Cell stress in cortical organoids impairs molecular subtype specification

Aparna Bhaduri et al.Jan 29, 2020
Cortical organoids are self-organizing three-dimensional cultures that model features of the developing human cerebral cortex1,2. However, the fidelity of organoid models remains unclear3–5. Here we analyse the transcriptomes of individual primary human cortical cells from different developmental periods and cortical areas. We find that cortical development is characterized by progenitor maturation trajectories, the emergence of diverse cell subtypes and areal specification of newborn neurons. By contrast, organoids contain broad cell classes, but do not recapitulate distinct cellular subtype identities and appropriate progenitor maturation. Although the molecular signatures of cortical areas emerge in organoid neurons, they are not spatially segregated. Organoids also ectopically activate cellular stress pathways, which impairs cell-type specification. However, organoid stress and subtype defects are alleviated by transplantation into the mouse cortex. Together, these datasets and analytical tools provide a framework for evaluating and improving the accuracy of cortical organoids as models of human brain development. Single-cell RNA sequencing clarifies the development and specification of neurons in the human cortex and shows that cell stress impairs this process in cortical organoids.
0
Citation451
0
Save
Load More