DB
Denis Baird
Author with expertise in Genomic Studies and Association Analyses
University of Exeter, Biogen (United States), Medical Research Council
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
59
h-index:
17
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
76

Brain expression quantitative trait locus and network analysis reveals downstream effects and putative drivers for brain-related diseases

Nigel Klein et al.Oct 11, 2023
+17
M
E
N
Abstract Gaining insight into the downstream consequences of non-coding variants is an essential step towards the identification of therapeutic targets from genome-wide association study (GWAS) findings. Here we have harmonized and integrated 8,727 RNA-seq samples with accompanying genotype data from multiple brain-regions from 14 datasets. This sample size enabled us to perform both cis - and trans -expression quantitative locus (eQTL) mapping. Upon comparing the brain cortex cis -eQTLs (for 12,307 unique genes at FDR<0.05) with a large blood cis- eQTL analysis (n=31,684 samples), we observed that brain eQTLs are more tissue specific than previously assumed. We inferred the brain cell type for 1,515 cis -eQTLs by using cell type proportion information. We conducted Mendelian Randomization on 31 brain-related traits using cis -eQTLs as instruments and found 159 significant findings that also passed colocalization. Furthermore, two multiple sclerosis (MS) findings had cell type specific signals, a neuron-specific cis- eQTL for CYP24A1 and a macrophage specific cis -eQTL for CLECL1 . To further interpret GWAS hits, we performed trans -eQTL analysis. We identified 2,589 trans -eQTLs (at FDR<0.05) for 373 unique SNPs, affecting 1,263 unique genes, and 21 replicated significantly using single-nucleus RNA-seq data from excitatory neurons. We also generated a brain-specific gene-coregulation network that we used to predict which genes have brain-specific functions, and to perform a novel network analysis of Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Parkinson’s disease (PD) GWAS data. This resulted in the identification of distinct sets of genes that show significantly enriched co-regulation with genes inside the associated GWAS loci, and which might reflect drivers of these diseases.
1

An efficient and robust tool for colocalisation: Pair-wise Conditional and Colocalisation (PWCoCo)

Jamie Robinson et al.Oct 24, 2023
+6
M
G
J
Abstract Genetic colocalisation is an important tool to test for shared genetic aetiology and is commonly used to strengthen causal inference in genetic studies of molecular traits and drug targets. However, the single causal variant assumption of the original colocalization method is a considerable limitation in genomic regions with multiple causal effects. We integrated conditional analyses (GCTA-COJO) and colocalisation analyses (coloc), into a novel analysis tool called Pair-Wise Conditional Colocalization (PWCoCo). PWCoCo performs conditional analyses to identify independent signals for the two tested traits in a genomic region and then conducts colocalisation of each pair of conditionally independent signals for the two traits using summary-level data. This allows for the stringent single-variant assumption to hold for each pair of colocalisation analysis. We found that the computational efficiency of PWCoCo is on average better than colocalisation with Sum of Single Effects Regression using Summary Stats (SuSiE-RSS), with greater gains in efficiency for high-throughput analysis. In a case study using GWAS data for multiple sclerosis and brain cortex-derived eQTLs (MetaBrain), we recapitulated all previously identified genes, which showcased the robustness of the method. We further found colocalisation evidence for secondary signals in nine additional loci, which was not identifiable in conventional GWAS and/or colocalisation. PWCoCo offers key improvements over existing methods, including: (1) robust colocalisation when the single variant assumption is violated; (2) independent colocalisation of secondary signals, which enables identification of novel disease-causing variants; (3) an easy-to-use and computationally efficient tool to test for colocalisation of high-dimensional omics data.
1

Evaluating the potential benefits and pitfalls of combining protein and expression quantitative trait loci in evidencing drug targets

Jamie Robinson et al.Oct 24, 2023
+5
D
T
J
Abstract Molecular quantitative trait loci (molQTL), which can provide functional evidence on the mechanisms underlying phenotype-genotype associations, are increasingly used in drug target validation and safety assessment. In particular, protein abundance QTLs (pQTLs) and gene expression QTLs (eQTLs) are the most commonly used for this purpose. However, questions remain on how to best consolidate results from pQTLs and eQTLs for target validation. In this study, we combined blood cell-derived eQTLs and plasma-derived pQTLs to form QTL pairs representing each gene and its product. We performed a series of enrichment analyses to identify features of QTL pairs that provide consistent evidence for drug targets based on the concordance of the direction of effect of the pQTL and eQTL. We repeated these analyses using eQŢLs derived in 49 tissues. We found that 25-30% of blood-cell derived QTL pairs have discordant effects. The difference in tissues of origin for molecular markers contributes to, but is not likely a major source of, this observed discordance. Finally, druggable genes were as likely to have discordant QTL pairs as concordant. Our analyses suggest combining and consolidating evidence from pQTLs and eQTLs for drug target validation is crucial and should be done whenever possible, as many potential drug targets show discordance between the two molecular phenotypes that could be misleading if only one is considered. We also encourage investigating QTL tissue-specificity in target validation applications to help identify reasons for discordance and emphasise that concordance and discordance of QTL pairs across tissues are both informative in target validation.
0

Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases

Jie Zheng et al.May 6, 2020
+31
D
V
J
The human proteome is a major source of therapeutic targets. Recent genetic association analyses of the plasma proteome enable systematic evaluation of the causal consequences of variation in plasma protein levels. Here, we estimated the effects of 1002 proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not supported by results of colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium (LD) is widespread in naive phenome-wide association studies of proteins. Combining MR and colocalization evidence in cis-only analyses, we identified 111 putatively causal effects between 65 proteins and 52 disease-related phenotypes ([www.epigraphdb.org/pqtl/][1]). Evaluation of data from historic drug development programmes showed that target-indication pairs with MR and colocalization support were more likely to be approved, evidencing the value of our approach in identifying and prioritising potential therapeutic targets. [1]: http://www.epigraphdb.org/pqtl/
0

Using Y chromosomal haplogroups in genetic association studies and suggested implications

A. Erzurumluoglu et al.May 7, 2020
+2
T
D
A
Y chromosomal (Y-DNA) haplogroups are more widely used in population genetics than in genetic epidemiology, although associations between Y-DNA haplogroups and several traits (including cardio-metabolic traits) have been reported. In apparently homogeneous populations, there is still Y-DNA haplogroup variation which will result from population history. Therefore, hidden stratification and/or differential phenotypic effects by Y-DNA haplogroups could exist. To test this, we hypothesised that stratifying individuals according to their Y-DNA haplogroups before testing associations between autosomal SNPs and phenotypes will yield difference in association. For proof of concept, we derived Y-DNA haplogroups from 6,537 males from two epidemiological cohorts, ALSPAC (N=5,080, 816 Y-DNA SNPs) and 1958 Birth Cohort (N=1,457, 1,849 Y-DNA SNPs). For illustration, we studied well-known associations between 32 SNPs and body mass index (BMI), including associations involving FTO SNPs. Overall, no association was replicated in both cohorts when Y-DNA haplogroups were considered and this suggests that, for BMI at least, there is little evidence of differences in phenotype or gene association by Y-DNA structure. Further studies using other traits, Phenome-wide association studies (PheWAS), haplogroups and/or autosomal SNPs are required to test the generalisability of this approach.
0

Mendelian Randomization analysis reveals a causal influence of circulating sclerostin levels on bone mineral density and fractures

Jie Zheng et al.May 7, 2020
+27
I
W
J
In bone, sclerostin is mainly osteocyte-derived and plays an important local role in adaptive responses to mechanical loading. Whether circulating levels of sclerostin also play a functional role is currently unclear, which we aimed to examine by two sample Mendelian Randomisation (MR). A genetic instrument for circulating sclerostin, derived from a genome wide association study (GWAS) meta-analysis of serum sclerostin in 10,584 European-descent individuals, was examined in relation to femoral neck bone mineral density (BMD; n= 32,744) in GEFOS, and estimated BMD by heel ultrasound (eBMD; n=426,824), and fracture risk (n=426,795), in UK Biobank. Our GWAS identified two novel serum sclerostin loci, B4GALNT3 (standard deviation (SD)) change in sclerostin per A allele (β=0.20, P=4.6×10−49), and GALNT1 (β=0.11 per G allele, P=4.4×10−11). B4GALNT3 is an N-acetyl-galactosaminyltransferase, adding a terminal LacdiNAc disaccharide to target glycocoproteins, found to be predominantly expressed in kidney, whereas GALNT1 is an enzyme causing mucin-type O-linked glycosylation. Using these two SNPs as genetic instruments, MR revealed an inverse causal relationship between serum sclerostin and femoral neck BMD (β= −0.12, 95%CI= −0.20 to −0.05) and eBMD (β= −0.12, 95%CI= −0.14 to −0.10), and a positive relationship with fracture risk (β= 0.11, 95%CI= 0.01 to 0.21). Colocalization analysis demonstrated common genetic signals within the B4GALNT3 locus for higher sclerostin, lower eBMD, and greater B4GALNT3 expression in arterial tissue (Probability>99%). Our findings suggest that higher sclerostin levels are causally related to lower BMD and greater fracture risk. Hence, strategies for reducing circulating sclerostin, for example by targeting glycosylation enzymes as suggested by our GWAS results, may prove valuable in treating osteoporosis.
0

Plasma proteomic associations with genetics and health in the UK Biobank

Benjamin Sun et al.Oct 7, 2023
+52
M
J
B
The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand–receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public–private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.