AM
Arrate Muñoz‐Barrutia
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(80% Open Access)
Cited by:
2,358
h-index:
27
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data

Xabier Artaechevarria et al.Feb 20, 2009
It has been shown that employing multiple atlas images improves segmentation accuracy in atlas-based medical image segmentation. Each atlas image is registered to the target image independently and the calculated transformation is applied to the segmentation of the atlas image to obtain a segmented version of the target image. Several independent candidate segmentations result from the process, which must be somehow combined into a single final segmentation. Majority voting is the generally used rule to fuse the segmentations, but more sophisticated methods have also been proposed. In this paper, we show that the use of global weights to ponderate candidate segmentations has a major limitation. As a means to improve segmentation accuracy, we propose the generalized local weighting voting method. Namely, the fusion weights adapt voxel-by-voxel according to a local estimation of segmentation performance. Using digital phantoms and MR images of the human brain, we demonstrate that the performance of each combination technique depends on the gray level contrast characteristics of the segmented region, and that no fusion method yields better results than the others for all the regions. In particular, we show that local combination strategies outperform global methods in segmenting high-contrast structures, while global techniques are less sensitive to noise when contrast between neighboring structures is low. We conclude that, in order to achieve the highest overall segmentation accuracy, the best combination method for each particular structure must be selected.
0

An objective comparison of cell-tracking algorithms

Vladimír Ulman et al.Oct 30, 2017
This analysis describes the results of three Cell Tracking Challenge editions for examining the performance of cell segmentation and tracking algorithms and provides practical feedback for users and developers. We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge.
0

A benchmark for comparison of cell tracking algorithms

Martin Maška et al.Feb 12, 2014
Abstract Motivation: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge. In this article, we present the logistics, datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. Results: The main contributions of the challenge include the creation of a comprehensive video dataset repository and the definition of objective measures for comparison and ranking of the algorithms. With this benchmark, six algorithms covering a variety of segmentation and tracking paradigms have been compared and ranked based on their performance on both synthetic and real datasets. Given the diversity of the datasets, we do not declare a single winner of the challenge. Instead, we present and discuss the results for each individual dataset separately. Availability and implementation: The challenge Web site (http://www.codesolorzano.com/celltrackingchallenge) provides access to the training and competition datasets, along with the ground truth of the training videos. It also provides access to Windows and Linux executable files of the evaluation software and most of the algorithms that competed in the challenge. Contact: codesolorzano@unav.es Supplementary information: Supplementary data are available at Bioinformatics online.
0

Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections

Miguel Galarraga et al.Sep 20, 2012
The accurate estimation of the number and size of cells provides relevant information on the kinetics of growth and the physiological status of a given tissue or organ. Here, we present Adiposoft, a fully automated open-source software for the analysis of white adipose tissue cellularity in histological sections. First, we describe the sequence of image analysis routines implemented by the program. Then, we evaluate our software by comparing it with other adipose tissue quantification methods, namely, with the manual analysis of cells in histological sections (used as gold standard) and with the automated analysis of cells in suspension, the most commonly used method. Our results show significant concordance between Adiposoft and the other two methods. We also demonstrate the ability of the proposed method to distinguish the cellular composition of three different rat fat depots. Moreover, we found high correlation and low disagreement between Adiposoft and the manual delineation of cells. We conclude that Adiposoft provides accurate results while considerably reducing the amount of time and effort required for the analysis. The accurate estimation of the number and size of cells provides relevant information on the kinetics of growth and the physiological status of a given tissue or organ. Here, we present Adiposoft, a fully automated open-source software for the analysis of white adipose tissue cellularity in histological sections. First, we describe the sequence of image analysis routines implemented by the program. Then, we evaluate our software by comparing it with other adipose tissue quantification methods, namely, with the manual analysis of cells in histological sections (used as gold standard) and with the automated analysis of cells in suspension, the most commonly used method. Our results show significant concordance between Adiposoft and the other two methods. We also demonstrate the ability of the proposed method to distinguish the cellular composition of three different rat fat depots. Moreover, we found high correlation and low disagreement between Adiposoft and the manual delineation of cells. We conclude that Adiposoft provides accurate results while considerably reducing the amount of time and effort required for the analysis. ERRATUMJournal of Lipid ResearchVol. 55Issue 12PreviewThe authors of “Adiposoft: An automated software for the analysis of white adipose tissue cellularity in histological sections” (J. Lipid Res. 2012. 53: 2791–2976) have advised the Journal that the URL provided in the Materials and Methods section of their manuscript as the online location to download their open-source software is no longer usable. Full-Text PDF Open Access hematoxylin and eosin mean of the distribution of adipocyte diameters mean diameter mesenteric retroperitoneal subcutaneous Obesity is a disease associated with increased white adipose cellular mass, caused either by increased number of adipocytes (hyperplasia) or by adipocyte enlargement due to cytoplasmic lipid accumulation (hypertrophy). Therefore, the quantification of the amount and size of adipocytes in animal models is critical to properly characterize the differential response of individuals to dietary treatments (1DiGirolamo M. Fine J.B. Tagra K. Rossmanith R. Qualitative regional differences in adipose tissue growth and cellularity in male Wistar rats fed ad libitum.Am. J. Physiol. 1998; 274: R1460-1467PubMed Google Scholar), to test the efficacy of different food ingredients and bioactive compounds in models of diet-induced obesity, and to relate changes in cellularity with pathophysiological processes affected by obesity, such as oxidative stress, insulin resistance, and lipidemias (2Ong, K. K., 2010. Early determinants of obesity. In Adipose Tissue Development: From Animal Models to Clinical Conditions. Endocrine Development .Vol. 19. C. Lévy-Marchal and L. Pénicaud, editors. Karger, Basel. 53–62.Google Scholar–4Guilherme A. Virbasius J.V. Puri V. Czech M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes.Nat. Rev. Mol. Cell Biol. 2008; 9: 367-377Crossref PubMed Scopus (1601) Google Scholar). In summary, determining what causes the change in tissue cellularity, along with the specific location of the growth of adipose tissue, is essential to study the mechanisms driving obesity and metabolic diseases in animal models. Noninvasive imaging techniques, such as magnetic resonance imaging or X-ray computed tomography, are commonly used for the quantification of white adipose tissue mass in vivo. Unfortunately, these techniques do not provide information about adipose cellularity and thus are unable to distinguish between hyperplasia- and hypertrophy-driven obesity. For that purpose, several high-resolution ex vivo techniques exist, such as the analysis of cells in suspension, adipocyte fractionation, flow cytometry, and the histological analysis of cellularity in stained sections using optical or electron microscopy. Among all these methods, the analysis of cells in suspension is the most used technique, and some automated image analysis tools have been developed for the quantification of these samples (5Björnheden T. Jakubowicz B. Levin M. Odén B. Edén S. Sjöström L. Lönn M. Computerized determination of adipocyte size.Obes. Res. 2004; 12: 95-105Crossref PubMed Scopus (54) Google Scholar, 6Tchoukalova Y.D. Harteneck D.A. Karwoski R.A. Tarara J. Jensen M.D. A quick, reliable, and automated method for fat cell sizing.J. Lipid Res. 2003; 44: 1795-1801Abstract Full Text Full Text PDF PubMed Scopus (89) Google Scholar). Unfortunately though, the preparation of cells in suspension is complex because it requires the isolation of cells using collagenase. Moreover, the required tissue disaggregation causes loss of the microscopic histopathological context. The microscopic analysis of adipocyte cellularity in hematoxylin and eosin (H&E)-stained histological sections provides a reasonable cost-benefit ratio compared with the other methods. In this type of analysis, histological images are captured using a wide-field optical microscope, printed or screened, and then manually analyzed to count the number and measure the diameter of every cell. From the diameter, the average adipocyte volume and lipid content can be mathematically derived (7Di Girolamo M. Mendlinger S. Fertig J.W. A simple method to determine fat cell size and number in four mammalian species.Am. J. Physiol. 1971; 221: 850-858Crossref PubMed Scopus (271) Google Scholar, 8Lemonnier D. Effect of age, sex, and site on the cellularity of the adipose tissue in mice and rats rendered obese by a high-fat diet.J. Clin. Invest. 1972; 51: 2907-2915Crossref PubMed Scopus (207) Google Scholar). Although manual delineation is considered the most accurate method, it is extremely time consuming and cannot be used in practice, except as a gold standard to validate other methods. To simplify the otherwise time-consuming analysis of these histological samples, semi-automated computer tools can be used, such as the one proposed by Chen et al (9Chen H.C. Farese R.V. Determination of adipocyte size by computer image analysis.J. Lipid Res. 2002; 43: 986-989Abstract Full Text Full Text PDF PubMed Google Scholar) based on two independent, proprietary software packages, which reduce, but do not eliminate, human interaction. In this article, we present and validate Adiposoft, open-source software that provides fast and accurate quantitative measurements of adipose tissue cellularity in histological sections. The validation is done by comparing the software with the manual analysis of histological samples and with the analysis of cells in suspension. The three methods are compared in terms of speed, sample preparation, and imaging burden, as well as by the accuracy of the analysis in different fat tissue depots. Six male Wistar rats (weight 337.9 ± 14 g) were euthanized, and tissue blocks were extracted from three fat depots: retroperitoneal (RP), located in the abdominal cavity behind the peritoneum; mesenteric (MES), from the double layer of peritoneum that suspends the jejunum and ileum from the posterior wall of the abdomen; and subcutaneous (SC). Fat areas were identified, manually separated, and excised to avoid mixing white fat from different depots (10Casteilla, L., Penicaud, L., Cousin, B., Denis, C., . 2001. Choosing an adipose tissue depot for sampling. Factors in selection and depot specificity. In Adipose Tissue Protocols (Methods in Molecular Biology). Vol 155. G. Ailhaud, editor. Springer, New York. 1–19.Google Scholar, 11Boqué N. Campión J. Paternain I. García-Díaz D.F. Galarraga M. Portillo M.P. Milagro F.I. Ortiz de Solórzano C. Martínez J.A. Influence of dietary macronutrient composition on adiposity and cellularity of different fat depots in Wistar rats.J. Physiol. Biochem. 2009; 65: 387-395Crossref PubMed Scopus (35) Google Scholar). Tissue blocks from all depots were labeled either for histology or for the analysis of cells in suspension. All animal handling was done following both national and institutional guidelines of the Animal Care and Use Committee of the University of Navarra. Tissues were fixed in paraformaldehyde and embedded in paraffin. Two 4 μm sections per block were then stained with H&E and imaged at 20× (Plan-Neofluar objective with 0.50 NA) magnification with an AxioImager.M1 microscope (Zeiss, Germany). A total of 1,078 high-resolution images were acquired for the analysis. All images were stored in uncompressed 24-bit color TIFF format. White fat areas were cut into small pieces. Each fragment was digested at 37°C with collagenase I (2.5 mg ml−1) (Worthington Biochemical, Lakewood, NJ) in Krebs-Ringer bicarbonate buffer (KRBA) containing albumin (3.5 g 100 ml−1) and glucose (6 mM) at 7.4 pH. We used 2 ml of digestion solution per gram of adipose tissue. After 30 min of incubation under continuous vigorous shaking (60 cycles min−1), fat cells were filtered through a nylon mesh (400 µm) and washed three times with KRBA to eliminate the stroma-vascular fraction and collagenase. The filtered fat cells were diluted 1:1 in KRBA and loaded in a neubauer chamber. A total of 738 brightfield, wide-field images were captured using a CKX31 Compact inverted microscope equipped with a 40× magnification objective lens and a C5060WZ Olympus compact camera. All images were stored as JPG files. The sequence of image analysis steps automatically implemented by Adiposoft is shown in Fig. 1. This sequence was executed in batch mode on the entire set of images stored in a predefined directory. Briefly, each input color image (Fig. 1A) is split into its three-color channels. The red channel (Fig. 1B) is binarized using Otsu's automatic thresholding method (12Otsu N. A threshold selection method from gray-level histograms.IEEE Trans. Syst. Man Cybern. 1978; 9: 62-66Crossref Google Scholar) that extracts the bright fat areas from dark cell nuclei and membranes (Fig. 1C). Because cells often merge in areas that contain thin cellular walls, we detect the cell boundaries in those regions using a morphological filter. Namely, we apply a morphological Opening followed by a Median filter (13Sun T. Neuvo Y. Detail-preserving median based filters in image processing.Pattern Recognition Letters. 1994; 15: 341-347Crossref Scopus (609) Google Scholar) to remove small objects and reinforce cell boundaries (Fig. 1D). Next, we apply a seeded Watershed algorithm (14Vincent L. Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations.IEEE PAMI. 1991; 13: 583-598Crossref Scopus (4555) Google Scholar, 15Malpica N. Ortiz de Solórzano C. Vaquero J.J. Santos A. Vallcorba I. García Sagredo J.M. del Pozo F. Applying watershed algorithms to the segmentation of clustered nuclei.Cytometry. 1997; 28: 289-297Crossref PubMed Scopus (386) Google Scholar) to the filtered image using as seeds the peaks of the distance transform of the previously computed image (Fig. 1E). Next, we use a logical AND operation to combine the result of the Watershed (Fig. 1F) with the output of the initial thresholding (Fig. 1C), thus reinforcing the cellular boundaries and forcing the separation of clustered adipocytes (Fig. 1G). Objects touching the image borders are deleted (Fig. 1H). The remaining objects are measured (number, size, and Feret diameter), and those with a diameter below a predefined threshold (25 μm) are removed from the image (Fig. 1I). All the objects left in the image are then labeled according to their sizes (Fig. 1J), and the output data is stored in an Excel file. From the diameters, the mean fat-cell volume and lipid content are derived mathematically using the method described in Bourgeois et al. (16Bourgeois F. Alexiu A. Lemonnier D. Dietary-induced obesity: effect of dietary fats on adipose tissue cellularity in mice.Br. J. Nutr. 1983; 49: 17-26Crossref PubMed Scopus (79) Google Scholar). The set of histological images was also manually analyzed. The method used is not completely manual, but it requires intensive user interaction: First, all the adipocytes were manually seeded using ImageJ's multipoint selection (17Abramoff M.D. Magalhaes P.J. Ram S.J. Image processing with ImageJ.Biophotonics International. 2004; 11: 36-42Google Scholar). Then the adipocytes were automatically separated using the Watershed transform plugin. Interactive tools were used, whenever necessary, to correct inaccurate results. The adipocyte area, Feret diameter, and number were measured. The images of cells in suspension were analyzed using a set of simple image analysis and measurement routines available in ImageJ. First, each image is split into its three-color components, and the green channel is binarized using ImageJ's embedded automated threshold. Then the area, diameter, and number of cells are calculated. Fig. 2 shows an image with cells in suspension and the output of the segmentation algorithm. Adiposoft was entirely developed in MATLAB v.7.11 (MathWorks, Natick, MA) using the DIPlib v2.2 C Image Processing library (18Luengo Hendriks, C. L., Van Vliet, L. J., Rieger, B., Van Ginkel, M., . 1999. DIPimage: a scientific image processing toolbox for MATLAB. Delft University of Technology, Delft, The Netherlands.Google Scholar) under Linux OS Fedora 14. To run Adiposoft, these or subsequent versions of MATLAB and DIPlib for any OS are required. We also migrated Adiposoft to JAVA and packaged it as an open-source ImageJ (17Abramoff M.D. Magalhaes P.J. Ram S.J. Image processing with ImageJ.Biophotonics International. 2004; 11: 36-42Google Scholar) plugin. Both versions of Adiposoft (MATLAB-based and Java-based), together with instructions for installation and setup are available at http://sw.wikkii.com/wiki/Adiposoft. The plugins used to manually analyze the histological samples and to process the cells in suspension are available at the same site. To validate Adiposoft, we compared the result [mean of the distribution of adipocyte diameters (MAD)] obtained using Adiposoft (described above) with our manually computed gold standard (described above) and with the analysis of cells in suspension (described above). To this end, we used samples from three different depots: MES, RP, and SC. Because there were three different analysis methods, the comparison was based on three cell populations. The cells analyzed by Adiposoft and manually were exactly the same, whereas the cells analyzed in suspension were different, although the cells were extracted from the same region and animal. We analyzed a total of 54 tissue samples, organized into nine depot method groups. The statistical differences between the nine groups were analyzed using two-way ANOVA, with one dependent variable (MAD) and two independent variables (depot and method). ANOVA detects whether there are significant differences between groups for the two independent variables, as well as for their interaction (depot*method). A level of probability P < 0.05 was used for statistically significant results, and P < 0.01 for very statistically significant results. For all statistical tests, SPSS v15.0 was used (SPSS, San Diego, CA). To compare the accuracy of Adiposoft with the manual method, we calculated the Pearson correlation between the per-image average adipocyte diameter on 250 images from all rats and depots. Then, we built a Bland and Altman plot, which graphically displayed the agreement and bias between both methods by plotting the per-image difference between the average diameter calculated using both methods. The plot indicates agreement if more than 95% of the data lies within two standard deviations of the average value. Additionally, we estimated the confidence interval with the interimage standard deviation error. For the statistical tests, we used SPSS v15.0 (SPSS, San Diego, CA) and the open-source statistical software package R (Foundation for Statistical Computing, Vienna, Austria). The dependent variable MAD was normally distributed for the groups formed by the combination of depot and method, as assessed by the Shapiro-Wilk test (all P > 0.05). There was also homogeneity of variance between groups as assessed by Levene's test for equality of error variances (0.438). The two-way ANOVA test (manual versus Adiposoft versus suspension) with the three different depots (MES, RP, SC) gave the expected results: i) we found no interaction between the depot and the method used to analyze the size of the adipocytes (P = 0.566); ii) for a given depot, the election of method did not produce significantly different measurements (P = 0.278); and iii) when we used the same method, we found significant differences between depots (P < 0.001). We then used a simple main effect analysis of MAD to confirm that the MAD of a given depot is not significantly different when analyzed with different methods (for MES, P = 0.413; for RP, P = 0.163; and for SC, P = 0.984). Also, using this type of analysis, we were able to see very statistically significant differences between depots (P < 0.001) when using the three methods separately. Finally, the Tukey posthoc test showed that adipocytes of the RP depot were significantly larger, which is a well-known feature, than those from MES and SC depots for all three methods used. This can be observed in Fig. 3, which represents the plot of results. We found high positive correlation between the per-image average adipocyte diameter provided by Adiposoft and the manual methods (Pearson correlation = 0.856, with 95% confidence interval, low = 0.73 and high = 0.83). Fig. 4A shows the dispersion of the per-image average diameter as measured by the Adiposoft and manual methods. Fig. 4B shows the Bland and Altman plot that displays the agreement between methods. The middle line corresponds to the existing bias, which in our case is very low (0.17 µm). The limits of agreement are shown as dashed lines. A value above the upper limit (+3.82 µm) or below the lower limit (−3.82 µm) has 95% likelihood of representing a real difference between the quantification obtained using the two methods. The calculated intra-image variability is 0.159 ± 0.345. Regarding time consumption, Adiposoft can analyze 40 fields in less than 5 min in a regular computer without any user intervention, whereas a manual operator, depending on the skills, could use an average of 5 min per image. Therefore, Adiposoft is between one and two orders of magnitude faster than the average manual operator. In this article, we have presented Adiposoft, fully automated open-source software for the quantification of adipocyte cellularity in histological sections. We have described the sequence of image analysis routines implemented by the program and have compared the performance of the software with our gold standard of manually segmenting the cells and with the analysis of cells in suspension. The comparison was based on the frequency size distribution of adipose cells in three different rat fat depots. Our results show significant concordance between Adiposoft and the other two methods, along with the expected ability to distinguish the cellular composition of all three different rat fat depots. Furthermore, we found high correlation and low disagreement between Adiposoft and the manual delineation of cells. In terms of time consumption, Adiposoft is between one and two orders of magnitude faster than the manual method. Therefore, Adiposoft provides similarly accurate results while being less time and effort consuming than the other two methods. Namely, Adiposoft requires a single click to analyze a whole set of images. This is significantly more effortless than manually segmenting the cells, which in its less effort consuming version requires manually planting a seed inside all the cells of each image and manually correcting inaccurate results. Adiposoft works with standard histological sections, whereas the analysis of cells in suspension requires collagenase digestion of the adipose tissue sample, adipocyte filtration and washes, and subsequent microscopic measurement of the diameter (19Campión J. Martinez J.A. Ketoconazole, an antifungal agent, protects against adiposity induced by a cafeteria diet.Horm. Metab. Res. 2004; 36: 485-491Crossref PubMed Scopus (21) Google Scholar). The disadvantages of this method include the need to extract and separate the adipocytes, which can easily break and divide during the process (thus altering the results), and the need for qualified staff to perform this protocol. Furthermore, in animal models with diet-induced obesity, hypertrophic adipocytes are more susceptible to breaking by treatment with collagenase. In summary, the automated analysis of histological sections by Adiposoft provides similar results to the analysis of cells in suspension, with the added value that the results are obtained without losing contextual histological information. The results should be more accurate in cases with diet-induced obesity due to the problems associated with the preparation protocol. A reasonable concern about the method used to evaluate Adiposoft stems from the fact that we used collagenase digestion to create the cell suspensions to evaluate our software. This procedure is usually problematic when handling large adipocytes, as they tend to break apart and coalesce into fat droplets (20Guo W. Bigornia S. Leizerman I. Xie W. McDonnell M. Clemente K. Pirtskhalava T. Kirkland J.L. Gokce N. Corkey B.E. et al.New scanning electron microscopic method for determination of adipocyte size in humans and mice.Obesity (Silver Spring). 2007; 15: 1657-1665Crossref PubMed Scopus (11) Google Scholar). Distinguishing these fat droplets from intact fat cells is not an easy task on unstained samples. Perilipin immune staining is commonly used to distinguish between intact adipocytes and lipid droplets. Our samples were not stained with Perilipin, which allowed for a small statistical error. However, fresh tissue from healthy normal rats was treated by highly experienced staff, thus minimizing the rupture of adipocytes and consequent coalescence into fat droplets. Two limitations of Adiposoft are the relatively time-consuming task of acquiring the images and the analysis of nonfatty tissue and low-quality images. To address the first issue, to automate the microscopy acquisition of the samples, we have implemented a Metamorph macro (Molecular Devices). (The macro is available at http://sw.wikkii.com/wiki/Adiposoft.) The macro first acquires the entire tissue section at low magnification (1.25× in Fig. 5). Then, the areas occupied by the tissue are detected. Finally, a predefined number of high-resolution, randomly located images are acquired at high magnification (20×, at the squares overlayed in Fig. 5). To that end, the system automatically focuses each field of view and then applies a white balance and shadow correction on every acquired image. The high-magnification images are then automatically analyzed by Adiposoft as described in Materials and Methods. Regarding the analysis of nonfatty tissue, the tissue depots used were fairly homogenous, mostly containing only fatty cells. Therefore, most high-resolution images contain only adipocytes. However, it is true that sometimes high-resolution images may contain areas with background because the images were taken at the periphery of the tissue or in areas of the tissue containing fissures. Sometimes there might also appear blood vessels or connective tissue structures. In those cases, our software is able to remove those parts from the images, based on the intensity, size, and shape of the structures that they form. In summary, very rarely is one of those nonfatty structures confused with a cell, and when it does happen, the effect of this error on the final result of the analysis, based on hundreds or thousands of cells, is meaningless. Related to this last issue, during the preparation of histological sections, adipocytes can break, thus complicating the segmentation of the cells. Low-quality images with many broken adipocytes can be discarded; alternatively, Adiposoft can be run in semi-automatic mode. In this mode, the user can manually intervene in some of the steps shown in Fig. 1. Namely, the results can be edited by deleting false positives, dividing adipocytes clusters, or restoring incorrectly deleted regions. This option was not used in the evaluation of Adiposoft presented above, which was based on the fully automated mode. Furthermore, our data show that the diameter of adipocytes in the histological sections is on average smaller than in freshly isolated adipocytes (cells in suspension). This result is reasonable because the fixation procedure produces approximately a 20% tissue volume reduction. This issue must be taken into account when using the absolute size values provided by Adiposoft, but it is not a significant problem when comparing different adipose depots or treatment groups, as they are all equally affected by this effect. In summary, Adiposoft provides a good cost-benefit solution to the problem of analyzing adipose cellularity. Adiposoft automates the analysis of histological adipose tissue samples faster and independently of the user, thus providing more objective results than the existing software and manually based methods.
0
Citation331
0
Save
187

BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning in BioImage Analysis

Wei Ouyang et al.Jun 8, 2022
Abstract Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based workflows for imaging scientists remain far from sufficient. Several tools have recently risen to the challenge of democratizing deep learning by providing user-friendly interfaces to analyze new data with pre-trained or fine-tuned models. Still, few of the existing pre-trained models are interoperable between these tools, critically restricting a model’s overall utility and the possibility of validating and reproducing scientific analyses. Here, we present the BioImage Model Zoo ( https://bioimage.io ): a community-driven, fully open resource where standardized pre-trained models can be shared, explored, tested, and downloaded for further adaptation or direct deployment in multiple end user-facing tools (e.g., ilastik, deepImageJ, QuPath, StarDist, ImJoy, ZeroCostDL4Mic, CSBDeep). To enable everyone to contribute and consume the Zoo resources, we provide a model standard to enable cross-compatibility, a rich list of example models and practical use-cases, developer tools, documentation, and the accompanying infrastructure for model upload, download and testing. Our contribution aims to lay the groundwork to make deep learning methods for microscopy imaging findable, accessible, interoperable, and reusable (FAIR) across software tools and platforms.
57

Tumor proliferation and invasion are coupled through cell-extracellular matrix friction

Ashleigh Crawford et al.Nov 15, 2022
Abstract Cell proliferation and invasion are two key drivers of tumor progression and are traditionally considered two independent cellular processes regulated by distinct pathways. Through in vitro and in silico methods, we provide evidence that these two processes are intrinsically coupled through matrix-adhesion friction. Using novel tumor spheroids, we show that both tumor cell proliferation and invasion are limited by a volumetric carrying capacity of the system, i.e. maximum spatial cell concentration supported by the system’s total cell count, nutrient consumption rate, and collagen gel mechanical properties. To manipulate these phenotypes in breast cancer cells, we modulate the expression of E-cadherin and its associated role in adhesion, invasion, and proliferation. We integrate these results into a mixed-constitutive formulation to computationally delineate the contributions of cellular and extracellular adhesion, stiffness, and mechanical properties of the extracellular matrix (ECM) to the proliferative and invasive fates of breast cancer tumor spheroids. Both approaches conclude that the dominant drivers of tumor fate are system properties modulating cell-ECM friction, such as E-cadherin dependent cell-ECM adhesion and matrix pore size.
57
Citation3
0
Save
0

Use of the p-value as a size-dependent function to address practical differences when analyzing large datasets

Estibaliz Gómez‐de‐Mariscal et al.Dec 17, 2019
ABSTRACT Biomedical research has come to rely on p-values as a deterministic measure for data-driven decision making. In the largely extended null-hypothesis significance testing (NHST) for identifying statistically significant differences among groups of observations, a single p-value computed from sample data is routinely compared with a threshold, commonly set to 0.05, to assess the evidence against the hypothesis of having non-significant differences among groups, or the null hypothesis. Because the estimated p-value tends to decrease when the sample size is increased, applying this methodology to large datasets results in the rejection of the null hypothesis, making it not directly applicable in this specific situation. Herein, we propose a systematic and easy-to-follow method to detect differences based on the dependence of the p-value on the sample size. The proposed method introduces new descriptive parameters that overcome the effect of the size in the p-value interpretation in the framework of large datasets, reducing the uncertainty in the decision about the existence of biological/clinical differences between the compared experiments. This methodology enables both the graphical and quantitative characterization of the differences between the compared experiments guiding the researchers in the decision process. An in-depth study of the proposed methodology is carried out using both simulated and experimentally obtained data. Simulations show that under controlled data, our assumptions on the p-value dependence on the sample size holds. The results of our analysis in the experimental datasets reflect the large scope of this approach and its interpretability in terms of common decision-making and data characterization tasks. For both simulated and real data, the obtained results are robust to sampling variations within the dataset.
0

Automatic classification of normal and abnormal cell division using deep learning

Pablo Delgado-Rodriguez et al.Jun 20, 2024
In recent years, there has been a surge in the development of methods for cell segmentation and tracking, with initiatives like the Cell Tracking Challenge driving progress in the field. Most studies focus on regular cell population videos in which cells are segmented and followed, and parental relationships annotated. However, DNA damage induced by genotoxic drugs or ionizing radiation produces additional abnormal events since it leads to behaviors like abnormal cell divisions (resulting in a number of daughters different from two) and cell death. With this in mind, we developed an automatic mitosis classifier to categorize small mitosis image sequences centered around one cell as "Normal" or "Abnormal." These mitosis sequences were extracted from videos of cell populations exposed to varying levels of radiation that affect the cell cycle's development. We explored several deep-learning architectures and found that a network with a ResNet50 backbone and including a Long Short-Term Memory (LSTM) layer produced the best results (mean F1-score: 0.93 ± 0.06). In the future, we plan to integrate this classifier with cell segmentation and tracking to build phylogenetic trees of the population after genomic stress.
0
Citation2
0
Save
0

Generative interpolation and restoration of images using deep learning for improved 3D tissue mapping

Saurabh Joshi et al.Mar 10, 2024
ABSTRACT The development of novel imaging platforms has improved our ability to collect and analyze large three-dimensional (3D) biological imaging datasets. Advances in computing have led to an ability to extract complex spatial information from these data, such as the composition, morphology, and interactions of multi-cellular structures, rare events, and integration of multi-modal features combining anatomical, molecular, and transcriptomic (among other) information. Yet, the accuracy of these quantitative results is intrinsically limited by the quality of the input images, which can contain missing or damaged regions, or can be of poor resolution due to mechanical, temporal, or financial constraints. In applications ranging from intact imaging (e.g. light-sheet microscopy and magnetic resonance imaging) to sectioning based platforms (e.g. serial histology and serial section transmission electron microscopy), the quality and resolution of imaging data has become paramount. Here, we address these challenges by leveraging frame interpolation for large image motion (FILM), a generative AI model originally developed for temporal interpolation, for spatial interpolation of a range of 3D image types. Comparative analysis demonstrates the superiority of FILM over traditional linear interpolation to produce functional synthetic images, due to its ability to better preserve biological information including microanatomical features and cell counts, as well as image quality, such as contrast, variance, and luminance. FILM repairs tissue damages in images and reduces stitching artifacts. We show that FILM can decrease imaging time by synthesizing skipped images. We demonstrate the versatility of our method with a wide range of imaging modalities (histology, tissue-clearing/light-sheet microscopy, magnetic resonance imaging, serial section transmission electron microscopy), species (human, mouse), healthy and diseased tissues (pancreas, lung, brain), staining techniques (IHC, H&E), and pixel resolutions (8 nm, 2 µm, 1mm). Overall, we demonstrate the potential of generative AI in improving the resolution, throughput, and quality of biological image datasets, enabling improved 3D imaging.
Load More