BM
Bratislav Mišić
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
97
(89% Open Access)
Cited by:
3,812
h-index:
49
/
i10-index:
123
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets

Reinder Wael et al.Mar 5, 2020
Abstract Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales.
1

Gradients of structure–function tethering across neocortex

Bertha Vázquez-Rodríguez et al.Sep 30, 2019
The white matter architecture of the brain imparts a distinct signature on neuronal coactivation patterns. Interregional projections promote synchrony among distant neuronal populations, giving rise to richly patterned functional networks. A variety of statistical, communication, and biophysical models have been proposed to study the relationship between brain structure and function, but the link is not yet known. In the present report we seek to relate the structural and functional connection profiles of individual brain areas. We apply a simple multilinear model that incorporates information about spatial proximity, routing, and diffusion between brain regions to predict their functional connectivity. We find that structure–function relationships vary markedly across the neocortex. Structure and function correspond closely in unimodal, primary sensory, and motor regions, but diverge in transmodal cortex, particularly the default mode and salience networks. The divergence between structure and function systematically follows functional and cytoarchitectonic hierarchies. Altogether, the present results demonstrate that structural and functional networks do not align uniformly across the brain, but gradually uncouple in higher-order polysensory areas.
0

Microstructural and functional gradients are increasingly dissociated in transmodal cortices

Casey Paquola et al.May 20, 2019
While the role of cortical microstructure in organising neural function is well established, it remains unclear how structural constraints can give rise to more flexible elements of cognition. While nonhuman primate research has demonstrated a close structure–function correspondence, the relationship between microstructure and function remains poorly understood in humans, in part because of the reliance on post mortem analyses, which cannot be directly related to functional data. To overcome this barrier, we developed a novel approach to model the similarity of microstructural profiles sampled in the direction of cortical columns. Our approach was initially formulated based on an ultra-high–resolution 3D histological reconstruction of an entire human brain and then translated to myelin-sensitive magnetic resonance imaging (MRI) data in a large cohort of healthy adults. This novel method identified a system-level gradient of microstructural differentiation traversing from primary sensory to limbic regions that followed shifts in laminar differentiation and cytoarchitectural complexity. Importantly, while microstructural and functional gradients described a similar hierarchy, they became increasingly dissociated in transmodal default mode and fronto–parietal networks. Meta-analytic decoding of these topographic dissociations highlighted involvement in higher-level aspects of cognition, such as cognitive control and social cognition. Our findings demonstrate a relative decoupling of macroscale functional from microstructural gradients in transmodal regions, which likely contributes to the flexible role these regions play in human cognition.
0
Citation423
0
Save
0

Neighborhood greenspace and health in a large urban center

Omid Kardan et al.Jul 9, 2015
Abstract Studies have shown that natural environments can enhance health and here we build upon that work by examining the associations between comprehensive greenspace metrics and health. We focused on a large urban population center (Toronto, Canada) and related the two domains by combining high-resolution satellite imagery and individual tree data from Toronto with questionnaire-based self-reports of general health perception, cardio-metabolic conditions and mental illnesses from the Ontario Health Study. Results from multiple regressions and multivariate canonical correlation analyses suggest that people who live in neighborhoods with a higher density of trees on their streets report significantly higher health perception and significantly less cardio-metabolic conditions (controlling for socio-economic and demographic factors). We find that having 10 more trees in a city block, on average, improves health perception in ways comparable to an increase in annual personal income of $10,000 and moving to a neighborhood with $10,000 higher median income or being 7 years younger. We also find that having 11 more trees in a city block, on average, decreases cardio-metabolic conditions in ways comparable to an increase in annual personal income of $20,000 and moving to a neighborhood with $20,000 higher median income or being 1.4 years younger.
0
Citation383
0
Save
1

Mapping neurotransmitter systems to the structural and functional organization of the human neocortex

Justine Hansen et al.Oct 27, 2022
Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.
0

Generative models of the human connectome

Richard Betzel et al.Oct 2, 2015
The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.
0

Network-Level Structure-Function Relationships in Human Neocortex

Bratislav Mišić et al.Apr 21, 2016
The dynamics of spontaneous fluctuations in neural activity are shaped by underlying patterns of anatomical connectivity. While numerous studies have demonstrated edge-wise correspondence between structural and functional connections, much less is known about how large-scale coherent functional network patterns emerge from the topology of structural networks. In the present study, we deploy a multivariate statistical technique, partial least squares, to investigate the association between spatially extended structural networks and functional networks. We find multiple statistically robust patterns, reflecting reliable combinations of structural and functional subnetworks that are optimally associated with one another. Importantly, these patterns generally do not show a one-to-one correspondence between structural and functional edges, but are instead distributed and heterogeneous, with many functional relationships arising from nonoverlapping sets of anatomical connections. We also find that structural connections between high-degree hubs are disproportionately represented, suggesting that these connections are particularly important in establishing coherent functional networks. Altogether, these results demonstrate that the network organization of the cerebral cortex supports the emergence of diverse functional network configurations that often diverge from the underlying anatomical substrate.
0
Paper
Citation299
0
Save
76

Learning function from structure in neuromorphic networks

Laura Suárez et al.Aug 9, 2021
The connection patterns of neural circuits in the brain form a complex network. Collective signalling within the network manifests as patterned neural activity and is thought to support human cognition and adaptive behaviour. Recent technological advances permit macroscale reconstructions of biological brain networks. These maps, termed connectomes, display multiple non-random architectural features, including heavy-tailed degree distributions, segregated communities and a densely interconnected core. Yet, how computation and functional specialization emerge from network architecture remains unknown. Here we reconstruct human brain connectomes using in vivo diffusion-weighted imaging and use reservoir computing to implement connectomes as artificial neural networks. We then train these neuromorphic networks to learn a memory-encoding task. We show that biologically realistic neural architectures perform best when they display critical dynamics. We find that performance is driven by network topology and that the modular organization of intrinsic networks is computationally relevant. We observe a prominent interaction between network structure and dynamics throughout, such that the same underlying architecture can support a wide range of memory capacity values as well as different functions (encoding or decoding), depending on the dynamical regime the network is in. This work opens new opportunities to discover how the network organization of the brain optimizes cognitive capacity. The relationship between brain organization, connectivity and computation is not well understood. The authors construct neuromorphic artificial neural networks endowed with biological connection patterns derived from diffusion-weighted imaging. The neuromorphic networks are trained to perform a memory task, revealing an interaction between network structure and dynamics.
Load More