HM
Hugh McColl
Author with expertise in Genomic Analysis of Ancient DNA
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
754
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The population history of northeastern Siberia since the Pleistocene

Martin Sikora et al.Jun 1, 2019
Northeastern Siberia has been inhabited by humans for more than 40,000 years but its deep population history remains poorly understood. Here we investigate the late Pleistocene population history of northeastern Siberia through analyses of 34 newly recovered ancient genomes that date to between 31,000 and 600 years ago. We document complex population dynamics during this period, including at least three major migration events: an initial peopling by a previously unknown Palaeolithic population of ‘Ancient North Siberians’ who are distantly related to early West Eurasian hunter-gatherers; the arrival of East Asian-related peoples, which gave rise to ‘Ancient Palaeo-Siberians’ who are closely related to contemporary communities from far-northeastern Siberia (such as the Koryaks), as well as Native Americans; and a Holocene migration of other East Asian-related peoples, who we name ‘Neo-Siberians’, and from whom many contemporary Siberians are descended. Each of these population expansions largely replaced the earlier inhabitants, and ultimately generated the mosaic genetic make-up of contemporary peoples who inhabit a vast area across northern Eurasia and the Americas. Analyses of 34 ancient genomes from northeastern Siberia, dating to between 31,000 and 600 years ago, reveal at least three major migration events in the late Pleistocene population history of the region.
1
Citation299
0
Save
370

Population Genomics of Postglacial Western Eurasia

Morten Allentoft et al.May 5, 2022
Summary Western Eurasia witnessed several large-scale human migrations during the Holocene 1–5 . To investigate the cross-continental impacts we shotgun-sequenced 317 primarily Mesolithic and Neolithic genomes from across Northern and Western Eurasia. These were imputed alongside published data to obtain diploid genotypes from >1,600 ancient humans. Our analyses revealed a ‘Great Divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers (HGs) were highly genetically differentiated east and west of this zone, and the impact of the neolithisation was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacements of HGs in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, while east of the Urals relatedness remained high until ∼4,000 BP, consistent with persistence of localised HG groups. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive but we demonstrate that HGs from the Middle Don region contributed ancestry to them. Yamnaya-groups later admixed with individuals associated with the Globular Amphora Culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
370
Citation28
0
Save
0

100 ancient genomes show repeated population turnovers in Neolithic Denmark

Morten Allentoft et al.Jan 10, 2024
Abstract Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales 1–4 . However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution 5–7 . Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet ( 13 C and 15 N content), mobility ( 87 Sr/ 86 Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.
0
Citation13
1
Save
107

The Selection Landscape and Genetic Legacy of Ancient Eurasians

Evan Irving-Pease et al.Sep 23, 2022
Summary The Eurasian Holocene (beginning c. 12 thousand years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using an imputed dataset of >1600 complete ancient genome sequences, and new computational methods for locating selection in time and space, we reconstructed the selection landscape of the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify major selection signals related to metabolism, possibly associated with the dietary shift occurring in this period. We show that the selection on loci such as the FADS cluster, associated with fatty acid metabolism, and the lactase persistence locus, began earlier than previously thought. A substantial amount of selection is also found in the HLA region and other loci associated with immunity, possibly due to the increased exposure to pathogens during the Neolithic, which may explain the current high prevalence of auto-immune disease, such as psoriasis, due to genetic trade-offs. By using ancient populations to infer local ancestry tracks in hundreds of thousands of samples from the UK Biobank, we find strong genetic differentiation among ancient Europeans in loci associated with anthropometric traits and susceptibility to several diseases that contribute to present-day disease burden. These were previously thought to be caused by local selection, but in fact can be attributed to differential genetic contributions from various source populations that are ancestral to present-day Europeans. Thus, alleles associated with increased height seem to have increased in frequency following the Yamnaya migration into northwestern Europe around 5,000 years ago. Alleles associated with increased risk of some mood-related phenotypes are overrepresented in the farmer ancestry component entering Europe from Anatolia around 11,000 years ago, while western hunter-gatherers show a strikingly high contribution of alleles conferring risk of traits related to diabetes. Our results paint a picture of the combined contributions of migration and selection in shaping the phenotypic landscape of present-day Europeans that suggests a combination of ancient selection and migration, rather than recent local selection, is the primary driver of present-day phenotypic differences in Europe.
107
Citation11
0
Save
0

Widespread horse-based mobility arose around 2200 bce in Eurasia

Pablo Librado et al.Jun 6, 2024
Abstract Horses revolutionized human history with fast mobility 1 . However, the timeline between their domestication and their widespread integration as a means of transport remains contentious 2–4 . Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 bce , through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 bce , and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 bce and earlier 3,5 . Finally, we detect significantly shortened generation times at Botai around 3500 bce , a settlement from central Asia associated with corrals and a subsistence economy centred on horses 6,7 . This supports local horse husbandry before the rise of modern domestic bloodlines.
0
Paper
Citation5
0
Save
0

The population history of northeastern Siberia since the Pleistocene

Martin Sikora et al.Oct 22, 2018
ABSTRACT Far northeastern Siberia has been occupied by humans for more than 40 thousand years. Yet, owing to a scarcity of early archaeological sites and human remains, its population history and relationship to ancient and modern populations across Eurasia and the Americas are poorly understood. Here, we analyze 34 ancient genome sequences, including two from fragmented milk teeth found at the ~31.6 thousand-year-old (kya) Yana RHS site, the earliest and northernmost Pleistocene human remains found. These genomes reveal complex patterns of past population admixture and replacement events throughout northeastern Siberia, with evidence for at least three large-scale human migrations into the region. The first inhabitants, a previously unknown population of “Ancient North Siberians” (ANS), represented by Yana RHS, diverged ~38 kya from Western Eurasians, soon after the latter split from East Asians. Between 20 and 11 kya, the ANS population was largely replaced by peoples with ancestry related to present-day East Asians, giving rise to ancestral Native Americans and “Ancient Paleosiberians” (AP), represented by a 9.8 kya skeleton from Kolyma River. AP are closely related to the Siberian ancestors of Native Americans, and ancestral to contemporary communities such as Koryaks and Itelmen. Paleoclimatic modelling shows evidence for a refuge during the last glacial maximum (LGM) in southeastern Beringia, suggesting Beringia as a possible location for the admixture forming both ancestral Native Americans and AP. Between 11 and 4 kya, AP were in turn largely replaced by another group of peoples with ancestry from East Asia, the “Neosiberians” from which many contemporary Siberians derive. We detect gene flow events in both directions across the Bering Strait during this time, influencing the genetic composition of Inuit, as well as Na Dene-speaking Northern Native Americans, whose Siberian-related ancestry components is closely related to AP. Our analyses reveal that the population history of northeastern Siberia was highly dynamic throughout the Late Pleistocene and Holocene. The pattern observed in northeastern Siberia, with earlier, once widespread populations being replaced by distinct peoples, seems to have taken place across northern Eurasia, as far west as Scandinavia.
0
Citation3
0
Save
0

Steppe Ancestry in western Eurasia and the spread of the Germanic Languages

Hugh McColl et al.Mar 14, 2024
Summary Germanic-speaking populations historically form an integral component of the North and Northwest European cultural configuration. According to linguistic consensus, the common ancestor of the Germanic languages, which include German, English, Frisian, Dutch as well as the Nordic languages, was spoken in Northern Europe during the Pre-Roman Iron Age. However, important questions remain concerning the earlier Bronze Age distribution of this Indo-European language branch in Scandinavia as well as the driving factors behind its Late Iron Age diversification and expansion across the European continent. A key difficulty in addressing these questions are the existence of striking differences in the interpretation of the archaeological record, leading to various hypotheses of correlations with linguistic dispersals and changes in material culture. Moreover, these interpretations have been difficult to assess using genomics due to limited ancient genomes and the difficulty in differentiating closely related populations. Here we integrate multidisciplinary evidence from population genomics, historical sources, archaeology and linguistics to offer a fully revised model for the origins and spread of Germanic languages and for the formation of the genomic ancestry of Germanic-speaking northern European populations, while acknowledging that coordinating archaeology, linguistics and genetics is complex and potentially controversial. We sequenced 710 ancient human genomes from western Eurasia and analysed them together with 3,940 published genomes suitable for imputing diploid genotypes. We find evidence of a previously unknown, large-scale Bronze Age migration within Scandinavia, originating in the east and becoming widespread to the west and south, thus providing a new potential driving factor for the expansion of the Germanic speech community. This East Scandinavian genetic cluster is first seen 800 years after the arrival of the Corded Ware Culture, the first Steppe-related population to emerge in Northern Europe, opening a new scenario implying a Late rather than an Middle Neolithic arrival of the Germanic language group in Scandinavia. Moreover, the non-local Hunter-Gatherer ancestry of this East Scandinavian cluster is indicative of a cross-Baltic maritime rather than a southern Scandinavian land-based entry. Later in the Iron Age around 1700 BP, we find a southward push of admixed Eastern and Southern Scandinavians into areas including Germany and the Netherlands, previously associated with Celtic speakers, mixing with local populations from the Eastern North Sea coast. During the Migration Period (1575-1200 BP), we find evidence of this structured, admixed Southern Scandinavian population representing the Western Germanic Anglo-Saxon migrations into Britain and Langobards into southern Europe. During the Migration Period, we detect a previously unknown northward migration back into Southern Scandinavia, partly replacing earlier inhabitants and forming the North Germanic-speaking Viking-Age populations of Denmark and southern Sweden, corresponding with historically attested Danes. However, the origin and character of these major changes in Scandinavia before the Viking Age remain contested. In contrast to these Western and Northern Germanic-speaking populations, we find the Wielbark population from Poland to be primarily of Eastern Scandinavian ancestry, supporting a Swedish origin for East Germanic groups. In contrast, the later cultural descendants, the Ostrogoths and Visigoths are predominantly of Southern European ancestry implying the adoption of Gothic culture. Together, these results highlight the use of archaeology, linguistics and genetics as distinct but complementary lines of evidence.
Load More