VS
Vivek Swarup
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
27
(74% Open Access)
Cited by:
2,800
h-index:
40
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism

Neelroop Parikshak et al.Dec 5, 2016
Autism spectrum disorder (ASD) involves substantial genetic contributions. These contributions are profoundly heterogeneous but may converge on common pathways that are not yet well understood. Here, through post-mortem genome-wide transcriptome analysis of the largest cohort of samples analysed so far, to our knowledge, we interrogate the noncoding transcriptome, alternative splicing, and upstream molecular regulators to broaden our understanding of molecular convergence in ASD. Our analysis reveals ASD-associated dysregulation of primate-specific long noncoding RNAs (lncRNAs), downregulation of the alternative splicing of activity-dependent neuron-specific exons, and attenuation of normal differences in gene expression between the frontal and temporal lobes. Our data suggest that SOX5, a transcription factor involved in neuron fate specification, contributes to this reduction in regional differences. We further demonstrate that a genetically defined subtype of ASD, chromosome 15q11.2-13.1 duplication syndrome (dup15q), shares the core transcriptomic signature observed in idiopathic ASD. Co-expression network analysis reveals that individuals with ASD show age-related changes in the trajectory of microglial and synaptic function over the first two decades, and suggests that genetic risk for ASD may influence changes in regional cortical gene expression. Our findings illustrate how diverse genetic perturbations can lead to phenotypic convergence at multiple biological levels in a complex neuropsychiatric disorder.
0
Citation622
0
Save
0

Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease

Samuel Morabito et al.Jul 8, 2021
The gene-regulatory landscape of the brain is highly dynamic in health and disease, coordinating a menagerie of biological processes across distinct cell types. Here, we present a multi-omic single-nucleus study of 191,890 nuclei in late-stage Alzheimer’s disease (AD), accessible through our web portal, profiling chromatin accessibility and gene expression in the same biological samples and uncovering vast cellular heterogeneity. We identified cell-type-specific, disease-associated candidate cis-regulatory elements and their candidate target genes, including an oligodendrocyte-associated regulatory module containing links to APOE and CLU. We describe cis-regulatory relationships in specific cell types at a subset of AD risk loci defined by genome-wide association studies, demonstrating the utility of this multi-omic single-nucleus approach. Trajectory analysis of glial populations identified disease-relevant transcription factors, such as SREBF1, and their regulatory targets. Finally, we introduce single-nucleus consensus weighted gene coexpression analysis, a coexpression network analysis strategy robust to sparse single-cell data, and perform a systems-level analysis of the AD transcriptome. An integrative analysis of single-nucleus assay for transposase-accessible chromatin with sequencing and RNA sequencing in normal and Alzheimer’s disease brain tissue identifies cell-type-specific cis-regulatory elements and candidate target genes at disease-associated loci.
0
Citation367
0
Save
0

Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB–mediated pathogenic pathways

Vivek Swarup et al.Nov 14, 2011
TDP-43 (TAR DNA-binding protein 43) inclusions are a hallmark of amyotrophic lateral sclerosis (ALS). In this study, we report that TDP-43 and nuclear factor κB (NF-κB) p65 messenger RNA and protein expression is higher in spinal cords in ALS patients than healthy individuals. TDP-43 interacts with and colocalizes with p65 in glial and neuronal cells from ALS patients and mice expressing wild-type and mutant TDP-43 transgenes but not in cells from healthy individuals or nontransgenic mice. TDP-43 acted as a co-activator of p65, and glial cells expressing higher amounts of TDP-43 produced more proinflammatory cytokines and neurotoxic mediators after stimulation with lipopolysaccharide or reactive oxygen species. TDP-43 overexpression in neurons also increased their vulnerability to toxic mediators. Treatment of TDP-43 mice with Withaferin A, an inhibitor of NF-κB activity, reduced denervation in the neuromuscular junction and ALS disease symptoms. We propose that TDP-43 deregulation contributes to ALS pathogenesis in part by enhancing NF-κB activation and that NF-κB may constitute a therapeutic target for the disease.
0
Citation299
0
Save
0

Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments

Vivek Swarup et al.Jul 13, 2011
Transactive response DNA-binding protein 43 ubiquitinated inclusions are a hallmark of amyotrophic lateral sclerosis and of frontotemporal lobar degeneration with ubiquitin-positive inclusions. Yet, mutations in TARDBP, the gene encoding these inclusions are associated with only 3% of sporadic and familial amyotrophic lateral sclerosis. Recent transgenic mouse studies have revealed a high degree of toxicity due to transactive response DNA-binding protein 43 proteins when overexpressed under the control of strong neuronal gene promoters, resulting in early paralysis and death, but without the presence of amyotrophic lateral sclerosis-like ubiquitinated transactive response DNA-binding protein 43-positive inclusions. To better mimic human amyotrophic lateral sclerosis, we generated transgenic mice that exhibit moderate and ubiquitous expression of transactive response DNA-binding protein 43 species using genomic fragments that encode wild-type human transactive response DNA-binding protein 43 or familial amyotrophic lateral sclerosis-linked mutant transactive response DNA-binding protein 43 (G348C) and (A315T). These novel transgenic mice develop many age-related pathological and biochemical changes reminiscent of human amyotrophic lateral sclerosis including ubiquitinated transactive response DNA-binding protein 43-positive inclusions, transactive response DNA-binding protein 43 cleavage fragments, intermediate filament abnormalities, axonopathy and neuroinflammation. All three transgenic mouse models (wild-type, G348C and A315T) exhibited impaired learning and memory capabilities during ageing, as well as motor dysfunction. Real-time imaging with the use of biophotonic transactive response DNA-binding protein 43 transgenic mice carrying a glial fibrillary acidic protein-luciferase reporter revealed that the behavioural defects were preceded by induction of astrogliosis, a finding consistent with a role for reactive astrocytes in amyotrophic lateral sclerosis pathogenesis. These novel transactive response DNA-binding protein 43 transgenic mice mimic several characteristics of human amyotrophic lateral sclerosis-frontotemporal lobar degeneration and they should provide valuable animal models for testing therapeutic approaches.
0
Citation230
0
Save
0

Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD

Michael Gandal et al.Nov 2, 2022
Abstract Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations 1–3 . In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural–immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex 1,2,4–6 . However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.
0
Citation85
-1
Save
40

Single-soma transcriptomics of tangle-bearing neurons in Alzheimer’s disease reveals the signatures of tau-associated synaptic dysfunction

Marcos Otero-García et al.May 13, 2020
Abstract Aggregation of hyperphosphorylated tau in neurofibrillary tangles (NFTs) is closely associated with neuronal death and cognitive decline in Alzheimer’s disease (AD). To define the signatures that distinguish between aggregation-prone and resistant cell states in AD, we developed a FACS-based method for the high-throughput isolation and transcriptome profiling of individual cells with cytoplasmic aggregates and profiled 63,110 somas from human AD brains. By comparing NFT-bearing and NFT-free somas within and across neuronal subtypes, we identified the cell-type-specific and shared states. NFT-bearing neurons shared a marked upregulation of genes associated with synaptic transmission, including a core set of 63 genes enriched for synaptic vesicle cycle and transsynaptic signaling, whereas glucose metabolism and oxidative phosphorylation changes were highly neuronal-subtype-specific. Apoptosis was modestly enriched in NFT-bearing neurons despite the strong link between tau and cell death. Our datasets provide a resource for investigating tau-mediated neurodegeneration and a platform for biomarker and drug target discovery.
40
Citation31
0
Save
204

High dimensional co-expression networks enable discovery of transcriptomic drivers in complex biological systems

Samuel Morabito et al.Sep 23, 2022
Biological systems are immensely complex, organized into a multi-scale hierarchy of functional units based on tightly-regulated interactions between distinct molecules, cells, organs, and organisms. While experimental methods enable transcriptome-wide measurements across millions of cells, the most ubiquitous bioinformatic tools do not support systems-level analysis. Here we present hdWGCNA, a comprehensive framework for analyzing co-expression networks in high dimensional transcriptomics data such as single-cell and spatial RNA-seq. hdWGCNA provides built-in functions for network inference, gene module identification, functional gene enrichment analysis, statistical tests for network reproducibility, and data visualization. In addition to conventional single-cell RNA-seq, hdWGCNA is capable of performing isoform-level network analysis using long-read single-cell data. We showcase hdWGCNA using publicly available single-cell datasets from Autism spectrum disorder and Alzheimer’s disease brain samples, identifying disease-relevant co-expression network modules in specific cell populations. hdWGCNA is directly compatible with Seurat, a widely-used R package for single-cell and spatial transcriptomics analysis, and we demonstrate the scalability of hdWGCNA by analyzing a dataset containing nearly one million cells.
204
Citation28
0
Save
29

Broad transcriptomic dysregulation across the cerebral cortex in ASD

Jillian Haney et al.Dec 18, 2020
Abstract Classically, psychiatric disorders have been considered to lack defining pathology, but recent work has demonstrated consistent disruption at the molecular level, characterized by transcriptomic and epigenetic alterations. 1–3 In ASD, upregulation of microglial, astrocyte, and immune signaling genes, downregulation of specific synaptic genes, and attenuation of regional gene expression differences are observed. 1,2,4–6 However, whether these changes are limited to the cortical association areas profiled is unknown. Here, we perform RNA-sequencing (RNA-seq) on 725 brain samples spanning 11 distinct cortical areas in 112 ASD cases and neurotypical controls. We identify substantially more genes and isoforms that differentiate ASD from controls than previously observed. These alterations are pervasive and cortex-wide, but vary in magnitude across regions, roughly showing an anterior to posterior gradient, with the strongest signal in visual cortex, followed by parietal cortex and the temporal lobe. We find a notable enrichment of ASD genetic risk variants among cortex-wide downregulated synaptic plasticity genes and upregulated protein folding gene isoforms. Finally, using snRNA-seq, we determine that regional variation in the magnitude of transcriptomic dysregulation reflects changes in cellular proportion and cell-type-specific gene expression, particularly impacting L3/4 excitatory neurons. These results highlight widespread, genetically-driven neuronal dysfunction as a major component of ASD pathology in the cerebral cortex, extending beyond association cortices to involve primary sensory regions.
29
Citation16
0
Save
Load More