JA
Jamie Allen
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(92% Open Access)
Cited by:
7,769
h-index:
21
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ensembl 2022

Fiona Cunningham et al.Oct 19, 2021
Ensembl (https://www.ensembl.org) is unique in its flexible infrastructure for access to genomic data and annotation. It has been designed to efficiently deliver annotation at scale for all eukaryotic life, and it also provides deep comprehensive annotation for key species. Genomes representing a greater diversity of species are increasingly being sequenced. In response, we have focussed our recent efforts on expediting the annotation of new assemblies. Here, we report the release of the greatest annual number of newly annotated genomes in the history of Ensembl via our dedicated Ensembl Rapid Release platform (http://rapid.ensembl.org). We have also developed a new method to generate comparative analyses at scale for these assemblies and, for the first time, we have annotated non-vertebrate eukaryotes. Meanwhile, we continually improve, extend and update the annotation for our high-value reference vertebrate genomes and report the details here. We have a range of specific software tools for specific tasks, such as the Ensembl Variant Effect Predictor (VEP) and the newly developed interface for the Variant Recoder. All Ensembl data, software and tools are freely available for download and are accessible programmatically.
0
Citation1,443
0
Save
0

Association analysis identifies 65 new breast cancer risk loci

Kyriaki Michailidou et al.Oct 20, 2017
Association analysis identifies 65 new breast cancer risk loci, predicts target genes for known risk loci and demonstrates a strong overlap with somatic driver genes in breast tumours. Genome-wide association studies for breast cancer have identified common genetic variation that influences susceptibility to this disease, but much of the genetic risk remains unexplained. Doug Easton and colleagues report a genome-wide association study for breast cancer in more than 122,000 cases and 105,000 controls. The authors genotyped a subset of these cases using OncoArray, a new, custom genome-wide single-nucleotide polymorphism (SNP) array for cancer genomics. Overall, they identify 65 loci newly associated with breast cancer susceptibility, and estimate that, together with 107 previously identified breast cancer susceptibility loci, these explain about 18 per cent of the familial relative risk of breast cancer. Polygenic risk scores may be used in risk prediction models and may improve early detection and targeted prevention of the disease. Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry1. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10−8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2–5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.
0
Citation1,228
0
Save
0

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

Nasim Mavaddat et al.Dec 13, 2018
Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs. Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
0
Citation829
0
Save
0

Ensembl 2023

Fergal Martin et al.Oct 14, 2022
Abstract Ensembl (https://www.ensembl.org) has produced high-quality genomic resources for vertebrates and model organisms for more than twenty years. During that time, our resources, services and tools have continually evolved in line with both the publicly available genome data and the downstream research and applications that utilise the Ensembl platform. In recent years we have witnessed a dramatic shift in the genomic landscape. There has been a large increase in the number of high-quality reference genomes through global biodiversity initiatives. In parallel, there have been major advances towards pangenome representations of higher species, where many alternative genome assemblies representing different breeds, cultivars, strains and haplotypes are now available. In order to support these efforts and accelerate downstream research, it is our goal at Ensembl to create high-quality annotations, tools and services for species across the tree of life. Here, we report our resources for popular reference genomes, the dramatic growth of our annotations (including haplotypes from the first human pangenome graphs), updates to the Ensembl Variant Effect Predictor (VEP), interactive protein structure predictions from AlphaFold DB, and the beta release of our new website.
0
Citation469
0
Save
0

Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer

Roger Milne et al.Oct 23, 2017
Roger Milne and colleagues conduct a genome-wide association study for estrogen receptor (ER)-negative breast cancer combined with BRCA1 mutation carriers in a large cohort. They identify ten new risk variants and find high genetic correlation between breast cancer risk for BRCA1 mutation carriers and risk of ER-negative breast cancer in the general population. Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease1. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10−8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
0
Citation332
0
Save
0

Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families

Xin Yang et al.Dec 16, 2019
PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10 −76 ), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10 −3 ), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10 −3 ), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10 −2 ). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age ( P for trend = 2.0 × 10 −3 ). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies ( P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.
0
Citation300
0
Save
Load More