MT
Mariko Taga
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(69% Open Access)
Cited by:
981
h-index:
18
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease

Sara Mostafavi et al.May 21, 2018
There is a need for new therapeutic targets with which to prevent Alzheimer’s disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases. The authors constructed and validated a molecular network of the aging human cortex from RNA sequencing data from 478 individuals and identified genes that affect cognitive decline or neuropathology in Alzheimer’s disease.
0
Citation454
0
Save
0

A single cell-based atlas of human microglial states reveals associations with neurological disorders and histopathological features of the aging brain

Marta Olah et al.Jun 11, 2018
Abstract Recent studies of bulk microglia have provided insights into the role of this immune cell type in central nervous system development, homeostasis and dysfunction. Nonetheless, our understanding of the diversity of human microglial cell states remains limited; microglia are highly plastic and have multiple different roles, making the extent of phenotypic heterogeneity a central question, especially in light of the development of therapies targeting this cell type. Here, we investigated the population structure of human microglia by single-cell RNA-sequencing. Using surgical- and autopsy-derived cortical brain samples, we identified 14 human microglial subpopulations and noted substantial intra- and inter-individual heterogeneity. These putative subpopulations display divergent associations with Alzheimer’s disease, multiple sclerosis, and other diseases. Several states show enrichment for genes found in disease-associated mouse microglial states, suggesting additional diversity among human microglia. Overall, human microglia appear to exist in different functional states with varying levels of involvement in different brain pathologies.
0
Citation23
0
Save
39

A cross-disease human microglial framework identifies disease-enriched subsets and tool compounds for microglial polarization

John Tuddenham et al.Jun 5, 2022
Abstract Human microglia play a pivotal role in neurological diseases, but few targeted therapies that directly modulate microglial state or function exist due to an incomplete understanding of microglial heterogeneity. We use single-cell RNA sequencing to profile live human microglia from autopsies or surgical resections across diverse neurological diseases and central nervous system regions. We observe a central divide between oxidative and heterocyclic metabolism and identify subsets associated with antigen presentation, motility, and proliferation. Specific subsets are enriched in susceptibility genes for neurodegenerative diseases or the disease-associated microglial signature. We validate subtypes in situ with an RNAscope-immunofluorescence pipeline and leverage our dataset as a classification resource, finding that iPSC model systems recapitulate substantial in vivo heterogeneity. Finally, we identify and validate candidates for chemically inducing subtype-specific states in vitro , showing that Camptothecin downregulates the transcriptional signature of disease-enriched subsets and upregulates a signature previously shown to be depleted in Alzheimer’s.
39
Citation14
0
Save
0

Human disease-specific cell signatures in non-lesional tissue in Multiple Sclerosis detected by single-cell and spatial transcriptomics

Matti Lam et al.Dec 20, 2023
Abstract Recent investigations of cell type changes in Multiple Sclerosis (MS) using single-cell profiling methods have focused on active lesional and peri-lesional brain tissue, and have implicated a number of peripheral and central nervous system cell types. However, an important question is the extent to which so-called “normal-appearing” non-lesional tissue in individuals with MS accumulate changes over the lifespan. Here, we compared post-mortem non-lesional brain tissue from donors with a pathological or clinical diagnosis of MS from the Religious Orders Study or Rush Memory and Aging Project (ROSMAP) cohorts to age– and sex-matched brains from persons without MS (controls). We profiled three brain regions using single-nucleus RNA-seq: dorsolateral prefrontal cortex (DLPFC), normal appearing white matter (NAWM) and the pulvinar in thalamus (PULV), from 15 control individuals, 8 individuals with MS, and 5 individuals with other detrimental pathologies accompanied by demyelination, resulting in a total of 78 samples. We identified region– and cell type-specific differences in non-lesional samples from individuals diagnosed with MS and/or exhibiting secondary demyelination with other neurological conditions, as compared to control donors. These differences included lower proportions of oligodendrocytes with expression of myelination related genes MOBP, MBP, PLP1, as well as higher proportions of CRYAB+ oligodendrocytes in all three brain regions. Among microglial signatures, we identified subgroups that were higher in both demyelination (TMEM163+/ERC2+), as well as those that were specifically higher in MS donors (HIF1A+/SPP1+) and specifically in donors with secondary demyelination (SOCS6+/MYO1E+), in both white and grey matter. To validate our findings, we generated Visium spatial transcriptomics data on matched tissue from 13 donors, and recapitulated our observations of gene expression differences in oligodendrocytes and microglia. Finally, we show that some of the differences observed between control and MS donors in NAWM mirror those previously reported between control WM and active lesions in MS donors. Overall, our investigation sheds additional light on cell type– and disease-specific differences present even in non-lesional white and grey matter tissue, highlighting widespread cellular signatures that may be associated with downstream pathological changes.
0
Citation1
0
Save
6

Chronic stroke sensorimotor impairment is related to smaller hippocampal volumes: An ENIGMA analysis

Artemis Zavaliangos‐Petropulu et al.Oct 28, 2021
Abstract Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is involved in sensorimotor behavior but has not been widely studied within the context of post-stroke upper limb sensorimotor impairment. The hippocampus is vulnerable to secondary degeneration after stroke, and damage to this region could further weaken sensorimotor circuits, leading to greater chronic sensorimotor impairment. The purpose of this study was to investigate the cross-sectional association between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke. We hypothesized that smaller ipsilesional hippocampal volumes would be associated with worse upper-limb sensorimotor impairment. Cross-sectional T1-weighted brain MRIs were pooled from 357 participants at the chronic stage after stroke (>180 days post-stroke) compiled from 18 research cohorts worldwide in the ENIGMA Stroke Recovery Working Group (age: median = 61 years, interquartile range = 18, range = 23-93; 135 women and 222 men). Sensorimotor impairment was estimated from the Fugl-Meyer Assessment of Upper Extremity scores. Robust mixed-effects linear models were used to test associations between post-stroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, p - value < 0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. We also performed an exploratory analysis to test whether sex differences influence the relationship between sensorimotor impairment and hippocampal volume. Upper limb sensorimotor impairment was positively associated with ipsilesional ( p = 0.005; d = 0.33) but not contralesional ( p = 0.96; d = 0.01) hippocampal volume, such that impairment was worse for participants with smaller ipsilesional hippocampal volume. This association remained significant independent of lesion volume or other covariates ( p = 0.001; d = 0.36). Evidence indicates an interaction between sensorimotor impairment and sex for both ipsilesional ( p = 0.008; d = −0.29) and contralesional ( p = 0.006; d = −0.30) hippocampal volumes, whereby women showed progressively worsening sensorimotor impairment with smaller hippocampal volumes compared to men. The present study has identified a novel association between chronic post-stroke sensorimotor impairment and ipsilesional, but not contralesional, hippocampal volume. This finding was not due to lesion size and may be stronger in women. We also provide supporting evidence that smaller hippocampal volume post-stroke is likely a consequence of ipsilesional damage, which could provide a link between vascular disease and other disorders, such as dementia.
6
Citation1
0
Save
0

BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 implicated in Tau pathology

Mariko Taga et al.Jan 30, 2019
Identified as an Alzheimer's disease (AD) susceptibility gene by genome wide-association studies, BIN1 has 10 isoforms that are expressed in the Central Nervous System (CNS). The distribution of these isoforms in different cell types, as well as their role in AD pathology still remains unclear. Utilizing antibodies targeting specific BIN1 epitopes in human post-mortem tissue and analyzing RNA expression data from purified microglia, we identified three isoforms expressed specifically in neurons (isoforms 1, 2 and 3) and four isoforms expressed in microglia (isoforms 6, 9, 10 and 12). The abundance of selected peptides, which correspond to groups of BIN1 protein isoforms, was measured in dorsolateral prefrontal cortex, and their relation to neuropathological features of AD was assessed. Peptides contained in exon 7 of BIN1's N-BAR domain were found to be significantly associated with AD-related traits and, particularly, tau pathology. Since only isoforms 1, 2 and 3 contain exon 7, it appears that decreased protein expression of the N-BAR domain of BIN1 is associated with greater accumulation of tau pathology and subsequent cognitive decline, with astrocytic rather than neuronal BIN1 being the more likely culprit. These effects are independent of the BIN1 AD risk variant, suggesting that targeting specific BIN1 isoforms might be a novel therapeutic approach to prevent the accumulation of tau pathology.
Load More