IC
Isaac Chiu
Author with expertise in Role of Neuropeptides in Physiology and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(85% Open Access)
Cited by:
4,829
h-index:
48
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bacteria activate sensory neurons that modulate pain and inflammation

Isaac Chiu et al.Aug 20, 2013
Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviours. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed to be secondary to immune activation. Here we demonstrate that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils and monocytes is not necessary for Staphylococcus aureus-induced pain in mice. Mechanical and thermal hyperalgesia in mice is correlated with live bacterial load rather than tissue swelling or immune activation. Bacteria induce calcium flux and action potentials in nociceptor neurons, in part via bacterial N-formylated peptides and the pore-forming toxin α-haemolysin, through distinct mechanisms. Specific ablation of Nav1.8-lineage neurons, which include nociceptors, abrogated pain during bacterial infection, but concurrently increased local immune infiltration and lymphadenopathy of the draining lymph node. Thus, bacterial pathogens produce pain by directly activating sensory neurons that modulate inflammation, an unsuspected role for the nervous system in host–pathogen interactions. This study shows that most known mediators of immunity, such as TLR2, MyD88, T cells or B cells, and neutrophils and monocytes, are dispensable for pain produced by Staphylococcus aureus infection; instead, bacterial products, such as N-formylated peptides and α-haemolysin, induce pain by directly activating nociceptor neurons, which in turn modulate inflammation. Bacterial infections such as those caused by Staphylococcus produce pain thought to be secondary to the immune response and inflammation. Now Clifford Woolf and colleagues report a previously unsuspected mechanism of pain induction during bacterial infection: a direct pathogen-mediated activation of nociceptors. They find that pain produced by Staphylococcus aureus infection in mice is independent of most known mediators of immunity. Rather, the bacteria produce two classes of molecules — formylated peptides and pore-forming toxins — that induce pain by directly activating nociceptor neurons that in turn modulate inflammation.
0

A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model

Isaac Chiu et al.Jul 1, 2013
Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer’s disease genes, are concurrently upregulated. Mutant microglia differed from SOD1WT, lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.
0

Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology

Isaac Chiu et al.Jul 26, 2012
Although the nervous and immune systems have been classically considered to modulate physiologically distinct functions, recent evidence points to coordinated activities during neurogenic inflammation. In this perspective, the authors examine the interactions between the peripheral nervous system and the immune response during health and disease. The peripheral nervous and immune systems are traditionally thought of as serving separate functions. The line between them is, however, becoming increasingly blurred by new insights into neurogenic inflammation. Nociceptor neurons possess many of the same molecular recognition pathways for danger as immune cells, and, in response to danger, the peripheral nervous system directly communicates with the immune system, forming an integrated protective mechanism. The dense innervation network of sensory and autonomic fibers in peripheral tissues and high speed of neural transduction allows rapid local and systemic neurogenic modulation of immunity. Peripheral neurons also seem to contribute to immune dysfunction in autoimmune and allergic diseases. Therefore, understanding the coordinated interaction of peripheral neurons with immune cells may advance therapeutic approaches to increase host defense and suppress immunopathology.
0

The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation

Antonia Wallrapp et al.Sep 12, 2017
Type 2 innate lymphoid cells (ILC2s) both contribute to mucosal homeostasis and initiate pathologic inflammation in allergic asthma. However, the signals that direct ILC2s to promote homeostasis versus inflammation are unclear. To identify such molecular cues, we profiled mouse lung-resident ILCs using single-cell RNA sequencing at steady state and after in vivo stimulation with the alarmin cytokines IL-25 and IL-33. ILC2s were transcriptionally heterogeneous after activation, with subpopulations distinguished by expression of proliferative, homeostatic and effector genes. The neuropeptide receptor Nmur1 was preferentially expressed by ILC2s at steady state and after IL-25 stimulation. Neuromedin U (NMU), the ligand of NMUR1, activated ILC2s in vitro, and in vivo co-administration of NMU with IL-25 strongly amplified allergic inflammation. Loss of NMU–NMUR1 signalling reduced ILC2 frequency and effector function, and altered transcriptional programs following allergen challenge in vivo. Thus, NMUR1 signalling promotes inflammatory ILC2 responses, highlighting the importance of neuro-immune crosstalk in allergic inflammation at mucosal surfaces. Neuromedin receptor NMUR1 is specifically expressed by a subpopulation of type 2 innate lymphoid cells and promotes the inflammatory response of these cells in response to allergens, indicating the importance of neuro-immune crosstalk in allergic responses. Vijay Kuchroo and colleagues use single-cell RNA sequencing techniques to analyse the responses of lung innate lymphoid cells in mice to the epithelial-cell-derived cytokines IL-15 and IL-33. They identify the neuromedin U receptor NMUR1 as a receptor specifically expressed by a subpopulation of type 2 innate lymphoid cells (ILC2s), and show that it is activated by IL-25 plus the neuropeptide ligand neuromedin U (NMU), generating a lung inflammatory response. Loss of NMU–NMUR1 signalling results in allergic lung inflammation.
0

Blocking Neuronal Signaling to Immune Cells Treats Streptococcal Invasive Infection

Felipe Pinho‐Ribeiro et al.May 1, 2018
The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which “pain is out of proportion” to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections.Video Abstracthttps://www.cell.com/cms/asset/771f07b8-4037-47bd-a5e8-c2131b7f51b0/mmc1.mp4Loading ...(mp4, 15.13 MB) Download video
0
Citation315
0
Save
Load More