MT
Madhavi Tippani
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Lieber Institute for Brain Development, Johns Hopkins University, Johns Hopkins Medicine
+ 3 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(85% Open Access)
Cited by:
17
h-index:
9
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
34

VistoSeg: processing utilities for high-resolution Visium/Visium-IF images for spatial transcriptomics data

Madhavi Tippani et al.Oct 24, 2023
+9
J
H
M
Abstract Background Spatial transcriptomics is a next-generation sequencing technology that combines the strengths of transcriptome-wide RNA-sequencing with histological imaging to generate spatial maps of gene expression in intact tissue sections. The 10x Genomics Visium and Visium-Immunofluorescence (Visium-IF) platforms are widely available commercial technologies for quantifying spatially-resolved gene expression. These technologies directly couple gene expression with high resolution histological or immunofluorescence images that contain rich morphological information about the tissue section. However, extracting and integrating image features with gene expression data remains challenging. Results Using MATLAB, we developed VistoSeg , which is a pipeline to process, analyze, and interactively visualize the high-resolution images from the 10x Genomics Visium and Visium-IF platforms. The output from VistoSeg can then be integrated with the spatial-molecular information in downstream analyses using common programming languages, such as R or Python. Conclusion VistoSeg provides user-friendly tools for integrating image-derived metrics from histological and immunofluorescent images with spatially-resolved gene expression data. This integrated approach can advance our understanding of the transcriptional landscape within tissue architecture. VistoSeg is freely available at http://research.libd.org/VistoSeg/ . Impact Statement Technologies for measuring gene activity levels, referred to as gene expression, have been evolving over decades and are the core of the transcriptomics subfield within genomics. The first report describing individual cell gene expression is from 2009 and as a method it became commercially available in 2014. While single cell transcriptomics increased our resolution beyond homogenate tissue, the advent of spatial transcriptomics technologies and commercial availability of spatial gene expression platforms, such as Visium, has facilitated studying gene expression in anatomical context. Visium measures local gene expression within the histological organization of single 6.5 mm 2 cryosection of tissue. Spatially-resolved transcriptomics provides a new challenge: integrating spatial gene expression with high resolution tissue images (brightfield histology or fluorescent antibody staining). VistoSeg image processing software is compatible with both Visium and Visium-IF from 10x Genomics, which are spatially-resolved transcriptomics assays employing histological and immunofluorescent images, respectively. From these images, the number of cells, identity of cell types, and other image-derived markers can be obtained for thousands of 2,375 µm 2 spots, where genome-wide gene expression is also measured. VistoSeg provides tools that enable processing these images in the context of gene expression maps to integrate these two high dimensional data types, and thus help unlock the new frontier in transcriptomics.
34
Citation9
0
Save
1

The gene expression landscape of the human locus coeruleus revealed by single-nucleus and spatially-resolved transcriptomics

Lukas Weber et al.Oct 24, 2023
+12
M
H
L
Abstract Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections throughout the central nervous system, playing critical roles in arousal and mood, as well as various components of cognition including attention, learning, and memory. The LC-NE system is also implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are highly sensitive to degeneration in both Alzheimer’s and Parkinson’s disease. Despite the clinical importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to characterize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in the human brain. We provide a freely accessible resource of these data in web-accessible and downloadable formats.
33

Electrophysiological measures from human iPSC-derived neurons are associated with schizophrenia clinical status and predict individual cognitive performance

Stephanie Page et al.Oct 24, 2023
+21
F
S
S
Abstract Neurons derived from human induced pluripotent stem cells (hiPSCs) have been used to model basic cellular aspects of neuropsychiatric disorders, but the relationship between the emergent phenotypes and the clinical characteristics of donor individuals has been unclear. We analyzed RNA expression and indices of cellular function in hiPSC-derived neural progenitors and cortical neurons generated from 13 individuals with high polygenic risk scores (PRS) for schizophrenia and a clinical diagnosis of schizophrenia, along with 15 neurotypical individuals with low PRS. We identified electrophysiological measures associated with diagnosis that implicated altered Na + channel function and GABA-ergic neurotransmission. Importantly, electrophysiological measures predicted cardinal clinical and cognitive features found in these schizophrenia patients. The identification of basic neuronal physiological properties related to core clinical characteristics of illness is a potentially critical step in generating leads for novel therapeutics.
33
Citation2
0
Save
1

CaPTure: Calcium PeakToolbox for analysis of in vitro calcium imaging data

Madhavi Tippani et al.Oct 24, 2023
+7
B
E
M
ABSTRACT Background Calcium imaging is a powerful technique for recording cellular activity across large populations of neurons. However, analysis methods capable of single-cell resolution in cultured neurons, especially for cultures derived from human induced pluripotent stem cells (hiPSCs), are lacking. Existing methods lack scalability to accommodate high-throughput comparisons between multiple lines, across developmental timepoints, or across pharmacological manipulations. Results We developed a scalable, automated Ca 2+ imaging analysis pipeline called CaPTure ( https://github.com/LieberInstitute/CaPTure ). This method detects neurons, classifies and quantifies spontaneous activity, quantifies synchrony metrics, and generates cell- and network-specific metrics that facilitate phenotypic discovery. The method is compatible with parallel processing on computing clusters without requiring significant user input or parameter modification. Conclusion CaPTure allows for rapid assessment of neuronal activity in cultured cells at cellular resolution, rendering it amenable to high-throughput screening and phenotypic discovery. The platform can be applied to both human- and rodent-derived neurons and is compatible with many imaging systems.
1

Influence of Alzheimer’s disease related neuropathology on local microenvironment gene expression in the human inferior temporal cortex

Sang Kwon et al.Oct 24, 2023
+13
M
S
S
Abstract Neuropathological lesions in the brains of individuals affected with neurodegenerative disorders are hypothesized to trigger molecular and cellular processes that disturb homeostasis of local microenvironments. Here, we applied the 10x Genomics Visium Spatial Proteogenomics (Visium-SPG) platform, which measures spatial gene expression coupled with immunofluorescence protein co-detection, in post-mortem human brain tissue from individuals with late-stage Alzheimer’s disease (AD) to investigate changes in spatial gene expression with respect to amyloid-β (Aβ) and hyperphosphorylated tau (pTau) pathology. We identified Aβ-associated transcriptomic signatures in the human inferior temporal cortex (ITC) during late-stage AD, which we further investigated at cellular resolution with combined immunofluorescence and single molecule fluorescent in situ hybridization (smFISH) co-detection technology. We present a workflow for analysis of Visium-SPG data and demonstrate the power of multi-omic profiling to identify spatially-localized changes in molecular dynamics that are linked to pathology in human brain disease. We provide the scientific community with web-based, interactive resources to access the datasets of the spatially resolved AD-related transcriptomes at https://research.libd.org/Visium_SPG_AD/ .
1
Paper
Citation1
0
Save
0

Spatially-resolved transcriptomics of human dentate gyrus across postnatal lifespan reveals heterogeneity in markers for proliferation, extracellular matrix, and neuroinflammation

Anthony Ramnauth et al.Nov 21, 2023
+10
H
M
A
The dentate gyrus of the anterior hippocampus is important for many human cognitive functions, including regulation of learning, memory, and mood. However, the postnatal development and aging of the dentate gyrus throughout the human lifespan has yet to be fully characterized in the same molecular and spatial detail as other species. Here, we generated a spatially-resolved molecular atlas of the dentate gyrus in postmortem human tissue using the 10x Genomics Visium platform to retain extranuclear transcripts and identify changes in molecular topography across the postnatal lifespan. We found enriched expression of extracellular matrix markers during infancy and increased expression of GABAergic cell-type markers GAD1, LAMP5, and CCK after infancy. While we identified a conserved gene signature for mouse neuroblasts in the granule cell layer (GCL), many of those genes are not specific to the GCL, and we found no evidence of signatures for other granule cell lineage stages at the GCL post-infancy. We identified a wide-spread hippocampal aging signature and an age-dependent increase in neuroinflammation associated genes. Our findings suggest major changes to the putative neurogenic niche after infancy and identify molecular foci of brain aging in glial and neuropil enriched tissue.
1

Induction of Bdnf from promoter I following electroconvulsive seizures contributes to structural plasticity in neurons of the piriform cortex

Anthony Ramnauth et al.Oct 24, 2023
+7
A
K
A
ABSTRACT The efficacy of electroconvulsive therapy (ECT) as a treatment for psychiatric disorders, including major depressive disorder (MDD) is hypothesized to depend on induction of molecular and cellular events that trigger structural plasticity in neurons. Electroconvulsive seizures (ECS) in animal models can help to inform our understanding of how electroconvulsive therapy (ECT) impacts the brain. ECS induces structural plasticity in neuronal dendrites in many brain regions, including the piriform cortex, a highly epileptogenic region that has also been implicated in depression. ECS-induced structural plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF), but the functional significance of these transcripts in dendritic plasticity is not clear. Here, we demonstrate that different Bdnf isoforms are expressed non-stochastically across neurons of the piriform cortex following ECS. Specifically, cells expressing Bdnf exon 1-containing transcripts show a unique spatial recruitment pattern in response to ECS. We further demonstrate that Bdnf Ex1 expression in these cells is necessary for ECS-induced dendritic spine plasticity.
1

Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular anatomy of the human dorsolateral prefrontal cortex

Louise Huuki-Myers et al.Oct 24, 2023
+20
N
A
L
Generation of a molecular neuroanatomical map of the human prefrontal cortex reveals novel spatial domains and cell-cell interactions relevant for psychiatric disease. The molecular organization of the human neocortex has been historically studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally-defined spatial domains that move beyond classic cytoarchitecture. Here we used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex (DLPFC). Integration with paired single nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we map the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains. Finally, we provide resources for the scientific community to explore these integrated spatial and single cell datasets at research.libd.org/spatialDLPFC/.
17

SUFI: An automated approach to spectral unmixing of fluorescent multiplex images captured in mouse and postmortem human brain tissues

Vijay Sadashivaiah et al.Oct 24, 2023
+7
S
M
V
Abstract Multispectral fluorescence imaging coupled with linear unmixing is a form of image data collection and analysis that uses multiple fluorescent dyes - each measuring a specific biological signal - that are simultaneously measured and subsequently “unmixed” to provide a read-out for each individual signal. This strategy allows for measuring multiple signals in a single data capture session - for example, multiple proteins or RNAs in tissue slices or cultured cells, but can often result in mixed signals and bleed-through problems across dyes. Existing spectral unmixing algorithms are not optimized for challenging biological specimens such as postmortem human brain tissue, and often require manual intervention to extract spectral signatures. We therefore developed an intuitive, automated, and flexible package called SUFI : spectral unmixing of fluorescent images ( https://github.com/LieberInstitute/SUFI ). This package unmixes multispectral fluorescence images by automating the extraction of spectral signatures using Vertex Component Analysis, and then performs one of three unmixing algorithms derived from remote sensing. We demonstrate these remote sensing algorithms’ performance on four unique biological datasets and compare the results to unmixing results obtained using ZEN Black software (Zeiss). We lastly integrate our unmixing pipeline into the computational tool dotdotdot that is used to quantify individual RNA transcripts at single cell resolution in intact tissues and perform differential expression analysis of smFISH data, and thereby provide a one-stop solution for multispectral fluorescence image analysis and quantification. In summary, we provide a robust, automated pipeline to assist biologists with improved spectral unmixing of multispectral fluorescence images.
0

Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex

Kristen Maynard et al.May 6, 2020
+15
L
L
K
We used the 10x Genomics Visium platform to define the spatial topography of gene expression in the six-layered human dorsolateral prefrontal cortex (DLPFC). We identified extensive layer-enriched expression signatures, and refined associations to previous laminar markers. We overlaid our laminar expression signatures onto large-scale single nuclei RNA sequencing data, enhancing spatial annotation of expression-driven clusters. By integrating neuropsychiatric disorder gene sets, we showed differential layer-enriched expression of genes associated with schizophrenia and autism spectrum disorder, highlighting the clinical relevance of spatially-defined expression. We then developed a data-driven framework to define unsupervised clusters in spatial transcriptomics data, which can be applied to other tissues or brain regions where morphological architecture is not as well-defined as cortical laminae. We lastly created a web application for the scientific community to explore these raw and summarized data to augment ongoing neuroscience and spatial transcriptomics research (http://research.libd.org/spatialLIBD)
Load More