Many diseases, such as obesity, have systemic effects that impact multiple organ systems throughout the body. However, tools for comprehensive, high-resolution analysis of disease-associated changes at the whole-body scale have been lacking. Here, we developed a suite of deep learning-based image analysis algorithms (MouseMapper) and integrated it with tissue clearing and light-sheet microscopy to enable a comprehensive analysis of diseases impacting diverse systems across the mouse body. This approach enables the quantitative analysis of cellular and structural changes across the entire mouse body at unprecedented resolution and scale, including tracking nerves over several centimeters in whole animal bodies. To demonstrate its power, we applied MouseMapper to study nervous and immune systems in high-fat diet induced obesity. We uncovered widespread changes in both immune cell distribution and nerve structures, including alterations in the trigeminal nerve characterized by a reduced number of nerve endings in obese mice. These structural abnormalities were associated with functional deficits of whisker sensing and proteomic changes in the trigeminal ganglion, primarily affecting pathways related to axon growth and the complement system. Additionally, we found heterogeneity in obesity-induced whole-body inflammation across different tissues and organs. Our study demonstrates MouseMapper's capability to discover and quantify pathological alterations at the whole-body level, offering a powerful approach for investigating the systemic impacts of various diseases.