RW
Rajat Walia
Author with expertise in Idiopathic Pulmonary Fibrosis: Diagnosis and Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
690
h-index:
21
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis

Arun Habermann et al.Jul 8, 2020
+25
L
A
A
Single-cell RNA sequencing provides new insights into pathologic epithelial and mesenchymal remodeling in the human lung.
0
Citation689
0
Save
1

Cell-type-specific and disease-associated expression quantitative trait loci in the human lung

Heini Natri et al.Mar 28, 2024
+15
L
C
H
Abstract Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis. Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA sequencing of lung tissue from 66 individuals with pulmonary fibrosis and 48 unaffected donors. Using a pseudobulk approach, we mapped expression quantitative trait loci (eQTLs) across 38 cell types, observing both shared and cell-type-specific regulatory effects. Furthermore, we identified disease interaction eQTLs and demonstrated that this class of associations is more likely to be cell-type-specific and linked to cellular dysregulation in pulmonary fibrosis. Finally, we connected lung disease risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression and implicates context-specific eQTLs as key regulators of lung homeostasis and disease.
1
Citation1
0
Save
81

Cell type-specific and disease-associated eQTL in the human lung

Heini Natri et al.Mar 21, 2023
+15
C
M
H
Abstract Common genetic variants confer substantial risk for chronic lung diseases, including pulmonary fibrosis (PF). Defining the genetic control of gene expression in a cell-type-specific and context-dependent manner is critical for understanding the mechanisms through which genetic variation influences complex traits and disease pathobiology. To this end, we performed single-cell RNA-sequencing of lung tissue from 67 PF and 49 unaffected donors. Employing a pseudo-bulk approach, we mapped expression quantitative trait loci (eQTL) across 38 cell types, observing both shared and cell type-specific regulatory effects. Further, we identified disease-interaction eQTL and demonstrated that this class of associations is more likely to be cell-type specific and linked to cellular dysregulation in PF. Finally, we connected PF risk variants to their regulatory targets in disease-relevant cell types. These results indicate that cellular context determines the impact of genetic variation on gene expression, and implicates context-specific eQTL as key regulators of lung homeostasis and disease.
0

Single-cell RNA-sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis

Arun Habermann et al.Sep 6, 2019
+26
L
A
A
Pulmonary fibrosis is a form of chronic lung disease characterized by pathologic epithelial remodeling and accumulation of extracellular matrix. In order to comprehensively define the cell types, mechanisms and mediators driving fibrotic remodeling in lungs with pulmonary fibrosis, we performed single-cell RNA-sequencing of single-cell suspensions from 10 non-fibrotic control and 20 PF lungs. Analysis of 114,396 cells identified 31 distinct cell types. We report a remarkable shift in epithelial cell phenotypes occurs in the peripheral lung in PF, and identify several previously unrecognized epithelial cell phenotypes including a KRT5-/KRT17+, pathologic ECM-producing epithelial cell population that was highly enriched in PF lungs. Multiple fibroblast subtypes were observed to contribute to ECM expansion in a spatially-discrete manner. Together these data provide high-resolution insights into the complexity and plasticity of the distal lung epithelium in human disease, and indicate a diversity of epithelial and mesenchymal cells contribute to pathologic lung fibrosis.