JG
Jonathan Grimm
Author with expertise in Fluorescence Microscopy Techniques
Janelia Research Campus, Howard Hughes Medical Institute, Helix (United States)
+ 7 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
22
(45% Open Access)
Cited by:
24
h-index:
41
/
i10-index:
63
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
62

Deuteration improves small-molecule fluorophores

Jonathan Grimm et al.Oct 24, 2023
+8
J
L
J
ABSTRACT Fluorescence microscopy relies on dyes that absorb short-wavelength photons and emit longer-wavelength light. In addition to this fluorescence process, dyes can undergo other photochemical reactions that result in spectral shifts and irreversible photobleaching. Increases in brightness, ‘chromostability’, and photostability of fluorescent dyes are therefore crucial for advancing the frontier of bioimaging. Here, we describe a general approach to improve small-molecule fluorophores using deuteration. Incorporating deuterium into the alkylamino substituents of rhodamines and other dyes improves fluorescence quantum yield, inhibits photochemically induced spectral shifts, and slows irreparable photobleaching. These compounds are easily synthesized and show improved performance in cellular imaging experiments.
71

Brain-wide measurement of protein turnover with high spatial and temporal resolution

Boaz Mohar et al.Oct 24, 2023
+5
R
J
B
A bstract Cellular functions are regulated by synthesizing and degrading proteins on time scales ranging from minutes to weeks. Protein turnover varies across proteins, cellular compartments, cell types, and tissues. In the brain, circuit-specific protein turnover is thought to underlie synaptic plasticity, but current methods to track protein turnover lack cellular or subcellular resolution. We describe a pulse–chase method (DELTA) to measure protein turnover with high spatial and temporal resolution throughout the body. DELTA relies on the rapid covalent capture by HaloTag of fluorescent ligands optimized for bioavailability in vivo , overcoming the unique challenges associated with labeling in the brain. We found that the nuclear protein MeCP2 showed brain-region- and cell-type-specific turnover, and the synaptic protein PSD95 was destabilized in specific brain regions following behavioral enrichment. A new variant of expansion microscopy enabled turnover measurements at individual synapses. DELTA will enable studies of adaptive and maladaptive plasticity in brain-wide neural circuits.
1

Voltage dynamics of dendritic integration and back-propagationin vivo

J. Wong-Campos et al.May 30, 2023
+8
H
P
J
Abstract Neurons integrate synaptic inputs within their dendrites and produce spiking outputs, which then propagate down the axon and back into the dendrites where they contribute to plasticity. Mapping the voltage dynamics in dendritic arbors of live animals is crucial for understanding neuronal computation and plasticity rules. Here we combine patterned channelrhodopsin activation with dual-plane structured illumination voltage imaging, for simultaneous perturbation and monitoring of dendritic and somatic voltage in Layer 2/3 pyramidal neurons in anesthetized and awake mice. We examined the integration of synaptic inputs and compared the dynamics of optogenetically evoked, spontaneous, and sensory-evoked back-propagating action potentials (bAPs). Our measurements revealed a broadly shared membrane voltage throughout the dendritic arbor, and few signatures of electrical compartmentalization among synaptic inputs. However, we observed spike rate acceleration-dependent propagation of bAPs into distal dendrites. We propose that this dendritic filtering of bAPs may play a critical role in activity-dependent plasticity.
1
Citation5
1
Save
0

Nanoscale imaging reveals the mechanisms of ER-to-Golgi transport via a dynamic tubular-vesicular network

Luis Wong-Dilworth et al.May 27, 2024
+9
S
G
L
The endoplasmic reticulum (ER) and the Golgi apparatus are the first sorting stations along the secretory pathway of mammalian cells and have a crucial role in protein quality control and cellular homeostasis. While machinery components mediating ER-to-Golgi transport have been mapped, it is unclear how exchange between the two closely juxtaposed organelles is coordinated in living cells. Here, using gene editing to tag machinery components, live-cell confocal and stimulated emission depletion (STED) super-resolution microscopy, we show that ER-to-Golgi transport occurs via a dynamic network of tubules positive for the small GTPase ARF4. swCOPI machinery is tightly associated to this network and moves with tubular-vesicular structures. Strikingly, the ARF4 network appears to be continuous with the ER and ARF4 tubules remodel around static ER exit sites (ERES) defined by COPII machinery. We were further able to dissect the steps of ER-to-Golgi transport with functional trafficking assays. A wave of cargo released from the ER percolates through peripheral and Golgi-tethered ARF4 structures before filling the cis-Golgi. Perturbation via acute degradation of ARF4 shows an active regulatory role for the GTPase and COPI in anterograde transport. Our data supports a model in which anterograde ER-to-Golgi transport occurs via an ARF4 tubular-vesicular network directly connecting the ER and Golgi-associated pre-cisternae.
30

Lysosomal release of amino acids at ER three-way junctions regulates transmembrane and secretory protein mRNA translation

Heejun Choi et al.Oct 24, 2023
+4
Y
Y
H
Abstract One-third of the mammalian proteome is comprised of transmembrane and secretory proteins that are synthesized on endoplasmic reticulum (ER). Here, we investigate the spatial distribution and regulation of mRNAs encoding these membrane and secretory proteins (termed “secretome” mRNAs) through live cell, single molecule tracking to directly monitor the position and translation states of secretome mRNAs on ER and their relationship to other organelles. Notably, translation of secretome mRNAs occurred preferentially near lysosomes on ER marked by the ER junction-associated protein, Lunapark. Knockdown of Lunapark reduced the extent of secretome mRNA translation without affecting translation of other mRNAs. Less secretome mRNA translation also occurred when lysosome function was perturbed by raising lysosomal pH or inhibiting lysosomal proteases. Secretome mRNA translation near lysosomes was enhanced during amino acid deprivation. Addition of the integrated stress response inhibitor, ISRIB, reversed the translation inhibition seen in Lunapark knockdown cells, implying an eIF2 dependency. Altogether, these findings uncover a novel coordination between ER and lysosomes, in which local release of amino acids and other factors from ER-associated lysosomes patterns and regulates translation of mRNAs encoding secretory and membrane proteins.
0

Imaging the extracellular matrix in live tissues and organisms with a glycan-binding fluorophore

Antonio Fiore et al.May 28, 2024
+14
J
G
A
All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from
0

Bright and photostable chemigenetic indicators for extended in vivo voltage imaging

Ahmed Abdelfattah et al.May 6, 2020
+20
A
T
A
Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, Voltron, that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 minutes of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.
0

Bright photoactivatable fluorophores for single-molecule imaging

Jonathan Grimm et al.May 6, 2020
+6
A
B
J
Small molecule fluorophores are important tools for advanced imaging experiments. The development of self-labeling protein tags such as the HaloTag and SNAP-tag has expanded the utility of chemical dyes in live-cell microscopy. We recently described a general method for improving the brightness and photostability of small, cell-permeable fluorophores, resulting in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of the JF dyes by synthesizing photoactivatable derivatives that are compatible with established live cell labeling strategies. These compounds retain the superior brightness of the JF dyes but their facile photoactivation enables improved single-particle tracking and localization microscopy experiments.
0

Spot-On: robust model-based analysis of single-particle tracking experiments

Anders Hansen et al.May 6, 2020
+3
J
M
A
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce Spot-On, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.
0

Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

Sanne Boersma et al.May 6, 2020
+4
B
D
S
mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous, as multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a new fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real-time. We find that start site selection is largely stochastic, but that the probability of using a particular start site differs among mRNA molecules, and can be dynamically regulated over time. Together, this study provides key insights into translation start site selection heterogeneity, and provides a powerful toolbox to visualize complex translation dynamics.
Load More