Industrial nitrogen fertilizer is intrinsic to modern agriculture yet expensive and environmentally harmful. We aim to reconstitute bacterial nitrogenase function within plant mitochondria to reduce nitrogen fertilizer usage. Many nitrogen fixation (Nif) proteins are required for biosynthesis and function of the mature nitrogenase enzyme, and these will need to be correctly processed and soluble within mitochondria as a pre-requisite for function. Here we present our workflow that assessed processing, solubility and relative abundance of 16 Klebsiella oxytoca Nif proteins targeted to the plant mitochondrial matrix using an Arabidopsis mitochondrial targeting peptide (MTP). The functional consequence of the N-terminal modifications required for mitochondrial targeting of Nif proteins was tested using bacterial nitrogenase assays. We found that despite the use of the same constitutive promoter and MTP, MTP::Nif processing and relative abundance in plant leaf varied considerably. Assessment of solubility for all MTP::Nif proteins found NifF, M, N, S, U, W, X, Y and Z were soluble, while NifB, E, H, J, K, Q and V were mostly insoluble. Although most Nif proteins tolerated the N-terminal extension as a consequence of mitochondrial processing, this extension in NifM reduced nitrogenase activity to 10% of controls. Using proteomics, we detected a ~50-fold increase in the abundance of NifM when it contained the N-terminal MTP extension, which may account for this reduction seen in nitrogenase activity. Based on plant mitochondrial processing and solubility, and retention of function in a bacterial assay, our workflow has identified that NifF, N, S, U, W, Y and Z satisfied all these criteria. Future work can now focus on improving these parameters for the remaining Nif components to assemble a complete set of plant-ready Nif proteins for reconstituting nitrogen fixation in plant mitochondria.