DN
Dick Nässel
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
10
h-index:
70
/
i10-index:
171
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Orchestration ofDrosophilapost-feeding physiology and behavior by the neuropeptide leucokinin

Meet Zandawala et al.Jun 26, 2018
+4
S
M
M
Abstract Behavior and physiology are orchestrated by neuropeptides acting as neuromodulators and/or circulating hormones. A central question is how these neuropeptides function to coordinate complex and competing behaviors. The neuropeptide leucokinin (LK) modulates diverse functions, including circadian rhythms, feeding, water homeostasis, and sleep, but the mechanisms underlying these complex interactions remain poorly understood. Here, we delineate the LK circuitry that governs homeostatic functions that are critical for survival. We found that impaired LK signaling affects diverse but coordinated processes, including regulation of stress, water homeostasis, locomotor activity, and metabolic rate. There are three different sets of LK neurons, which contribute to different aspects of this physiology. We show that the calcium activity of abdominal ganglia LK neurons (ABLKs) increases specifically following water consumption, but not under other conditions, suggesting that these neurons regulate water homeostasis and its associated physiology. To identify targets of LK peptide, we mapped the distribution of the LK receptor ( Lkr ), mined brain single-cell transcriptome dataset for genes coexpressed with Lkr , and utilized trans-synaptic labeling to identify synaptic partners of LK neurons. Lkr expression in the brain insulin-producing cells (IPCs), gut, renal tubules and sensory cells, and the post-synaptic signal in sensory neurons, correlates well with regulatory roles detected in the Lk and Lkr mutants. Furthermore, these mutants and flies with targeted knockdown of Lkr in IPCs displayed altered expression of insulin-like peptides (DILPs) in IPCs and modulated stress responses. Thus, some effects of LK signaling appear to occur via DILP action. Collectively, our data suggest that the three sets of LK neurons orchestrate the establishment of post-prandial homeostasis by regulating distinct physiological processes and behaviors such as diuresis, metabolism, organismal activity and insulin signaling. These findings provide a platform for investigating neuroendocrine regulation of behavior and brain-to-periphery communication.
0
Citation3
0
Save
1

Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence inDrosophila

Sifang Liao et al.Jun 28, 2020
D
M
S
Abstract Excess consumption of high-fat diet (HFD) is likely to result in obesity and increases the predisposition to associated health disorders. Drosophila melanogaster has emerged as an important model to study the effects of HFD on metabolism, gut function, behavior, and ageing. In this study, we investigated the effects of HFD on physiology and behavior of female flies at different time-points over several weeks. We found that HFD decreases lifespan, and also with age leads to accelerated decline of climbing ability in both virgins and mated flies. In virgins HFD also increased sleep fragmentation with age. Furthermore, long-term exposure to HFD results in elevated adipokinetic hormone (AKH) transcript levels and an enlarged crop with increased lipid stores. We detected no long-term effects of HFD on body mass, or levels of triacylglycerides (TAG), glycogen or glucose, although fecundity was diminished. However, one week of HFD resulted in decreased body mass and elevated TAG levels in mated flies. Finally, we investigated the role of AKH in regulating effects of HFD during aging. Both with normal diet (ND) and HFD, Akh mutant flies displayed increased longevity compared to control flies. However, both mutants and controls showed shortened lifespan on HFD compared to ND. In flies exposed to ND, fecundity is decreased in Akh mutants compared to controls after one week, but increased after three weeks. However, HFD leads to a similar decrease in fecundity in both genotypes after both exposure times. Thus, long-term exposure to HFD increases AKH signaling, impairs lifespan and fecundity and augments age-related behavioral senescence.
1
Citation2
0
Save
0

A neuroendocrine pathway modulating osmotic stress in Drosophila

Meet Zandawala et al.Jan 16, 2019
+6
H
M
M
Abstract Environmental factors challenge the physiological homeostasis in animals, thereby evoking stress responses. Various mechanisms have evolved to counter stress at the organism level, including regulation by neuropeptides. In recent years, much progress has been made on the mechanisms and neuropeptides that regulate responses to metabolic/nutritional stress, as well as those involved in countering osmotic and ionic stresses. Here, we identified a peptidergic pathway that links these types of regulatory functions. We uncover the neuropeptide Corazonin (Crz), previously implicated in responses to metabolic stress, as a neuroendocrine factor that inhibits the release of a diuretic hormone, CAPA, and thereby modulates the tolerance to osmotic and ionic stress. Both knockdown of Crz and acute injections of Crz peptide impact desiccation tolerance and recovery from chill-coma. Mapping of the Crz receptor ( CrzR ) expression identified three pairs of Capa- expressing neurons (Va neurons) in the ventral nerve cord that mediate these effects of Crz. We show that Crz acts to restore water/ion homeostasis by inhibiting release of CAPA neuropeptides via inhibition of cAMP production in Va neurons. Knockdown of CrzR in Va neurons affects CAPA signaling, and consequently increases tolerance for desiccation, ionic stress and starvation, but delays chill-coma recovery. Optogenetic activation of Va neurons stimulates excretion and simultaneous activation of Crz and CAPA-expressing neurons reduces this response, supporting the inhibitory action of Crz. Thus, Crz inhibits Va neurons to maintain osmotic and ionic homeostasis, which in turn affects stress tolerance. Earlier work demonstrated that systemic Crz signaling restores nutrient levels by promoting food search and feeding. Here we additionally propose that Crz signaling also ensures osmotic homeostasis by inhibiting release of CAPA neuropeptides and suppressing diuresis. Thus, Crz ameliorates stress-associated physiology through systemic modulation of both peptidergic neurosecretory cells and the fat body in Drosophila . Author summary Insects are among the largest groups of animals and have adapted to inhabit almost all environments on Earth. Their success in surviving extreme conditions stems largely from their ability to withstand environmental stress, such as desiccation and cold. However, the neural mechanisms that are responsible for coordinating responses to counter these stresses are largely unknown. To address this, we delineate a neuroendocrine axis utilizing the neuropeptides Corazonin (Crz) and CAPA, that coordinate responses to metabolic and osmotic stress. We show that Crz inhibits the release of a diuretic peptide, CAPA from a set of neurosecretory cells. CAPA in turn influences osmotic and ionic balance via actions on the Malpighian tubules (the insect analogs of the kidney) and the intestine. Taken together with earlier work, our data suggest that Crz acts to restore metabolic homeostasis at starvation and osmotic homeostasis during desiccation by inhibiting release of the diuretic hormone CAPA. Hence, this work provides a mechanistic understanding of the neuroendocrine mitigation of metabolic and osmotic stress by two peptide systems.
0
Paper
Citation2
0
Save
1

Failure to mate enhances investment in behaviors that may promote mating reward and impairs the ability to cope with stressors via a subpopulation of Neuropeptide F receptor neurons

Julia Ryvkin et al.Apr 28, 2021
+10
Y
L
J
Abstract Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.
1
Citation2
0
Save
0

Anti-diuretic hormone ITP signals via a guanylate cyclase receptor to modulate systemic homeostasis inDrosophila

Jayati Gera et al.Feb 10, 2024
+6
F
H
J
Insects have evolved a variety of neurohormones that enable them to maintain their nutrient and osmotic homeostasis. While the identities and functions of various insect metabolic and diuretic hormones have been well-established, the characterization of an anti-diuretic signaling system that is conserved across most insects is still lacking. To address this, here we characterized the ion transport peptide (ITP) signaling system in Drosophila . The Drosophila ITP gene encodes five transcript variants which generate three different peptide isoforms: ITP amidated (ITPa) and two ITP-like (ITPL1 and ITPL2) isoforms. Using a combination of anatomical mapping and single-cell transcriptome analyses, we comprehensively characterized the expression of all three ITP isoforms in the nervous system and peripheral tissues. Our analyses reveal widespread expression of ITP isoforms. Moreover, we show that ITPa is released during dehydration and recombinant Drosophila ITPa inhibits diuretic peptide-induced renal tubule secretion ex vivo , thus confirming its role as an anti-diuretic hormone. Using a phylogenetic-driven approach and the ex vivo secretion assay, we identified and functionally characterized Gyc76C, a membrane guanylate cyclase, as an elusive Drosophila ITPa receptor. Thus, knockdown of Gyc76C in renal tubules abolishes the inhibitory effect of ITPa on diuretic hormone secretion. Extensive anatomical mapping of Gyc76C reveals that it is highly expressed in larval and adult tissues associated with osmoregulation (renal tubules and rectum) and metabolic homeostasis (fat body). Consistent with this expression, knockdown of Gyc76C in renal tubules impacts tolerance to osmotic and ionic stresses, whereas knockdown specifically in the fat body impacts feeding, nutrient homeostasis and associated behaviors. We also complement receptor knockdown experiments with ITPa overexpression in ITP neurons. Interestingly, ITPa-Gyc76C pathways deciphered here are reminiscent of the atrial natriuretic peptide signaling in mammals. Lastly, we utilized connectomics and single-cell transcriptomics to identify synaptic and paracrine pathways upstream and downstream of ITP-expressing neurons. Taken together, our systematic characterization of the ITP signaling establishes a tractable system to decipher how a small set of neurons integrates diverse inputs to orchestrate systemic homeostasis in Drosophila .
0
Paper
Citation1
0
Save
0

Drosophila insulin-like peptide 1 (DILP1) promotes organismal growth and catabolic energy metabolism during the non-feeding pupal stage

Sifang Liao et al.Sep 19, 2018
+4
P
S
S
The insulin/IGF-signaling pathway is central in control of nutrient-dependent growth during development, and in adult physiology and longevity. Eight insulin-like peptides (DILP1-8) have been identified in Drosophila and several of these are known to regulate growth, metabolism, reproduction, stress responses and lifespan. However, the functional role of DILP1 is far from understood. Previous work has shown that dilp1 /DILP1 is transiently expressed mainly during the non-feeding pupal stage and the first days of adult life. Here we show that mutation of dilp1 diminishes organismal weight during pupal development, whereas overexpression increases it, similar to dilp6 manipulations. No growth effects of dilp1 or dilp6 manipulations were detected during larval development. We next show that dilp1 and dilp6 increase metabolic rate in the late pupa and promote lipids as the primary source of catabolic energy. This lipid mobilization in the pupa is not correlated with transcriptional changes of adipokinetic hormone. The effects of dilp1 manipulations carry over to the adult fly. In newly eclosed flies, survival during starvation is strongly diminished in dilp1 mutants, but not in dilp2 and dilp1 - dilp2 double mutants, whereas in older flies only double mutants display reduced starvation resistance. In conclusion, dilp1 and dilp6 promote growth of adult tissues during the non-feeding pupal stage, likely by utilization of stored lipids. This results in larger newly-eclosed flies with reduced stores of pupal-derived nutrients and diminished starvation tolerance and fecundity.
1

Sexual deprivation induces a CRF independent stress response and decreases resistance to stressors inDrosophilavia a subpopulation of Neuropeptide F receptor-expressing neurons

Julia Ryvkin et al.Mar 4, 2022
+8
M
A
J
Abstract Living in a changing environment composed of other behaving animals entails both opportunities and challenges to obtain resources and mating partners. Actions that promote survival and reproduction are reinforced by the brain reward systems, whereas coping with the challenges associated with obtaining these rewards are mediated by stress response pathways. The activation of the latter can impair health and shorten lifespan. Although similar responses to social opportunity and challenge exist across the animal kingdom, little is known about the mechanisms that process reward and stress under different social conditions. Here, we studied the interplay between deprivation of sexual reward and stress response in Drosophila melanogaster and discovered that repeated failures to obtain sexual reward induces a frustration-like state that is characterized by increased arousal, persistent sexual motivation, and impaired ability to cope with starvation and oxidative stressors. We show that this increased arousal and sensitivity to starvation is mediated by disinhibition of neurons that express receptors for the fly homologue of neuropeptide Y (neuropeptide F, NPF). We furthermore demonstrate the existence of an anatomical overlap between stress and reward systems in the fly brain in the form of neurons that co-express receptors for NPF (NPFR) and the corticotropin-releasing factor (CRF)-like homologue Diuretic hormone 44 (Dh44), and that deprivation of sexual reward leads to translocation of forkhead box-subgroup O (FoxO) to the cytoplasm in these neurons. Nevertheless, the activity of Dh44 neurons alone does not mediate sensitivity to starvation and aroused behavior following sexual deprivation, instead, these responses are mediated by disinhibition of ~12-16 NPFR-expressing neurons via a dynamin-independent synaptic signaling mechanism, suggesting the existence of a NPFR mediated stress pathway which is Dh44-independent. This paves the path for using simple model organisms to dissect mechanisms behind anticipation of reward, and more specifically, to determine what happens when expectations to obtain natural and drug rewards are not met.
0

Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila

Meet Zandawala et al.Jul 15, 2017
D
R
S
M
Multiple neuropeptides are known to regulate water and ion balance in Drosophila melanogaster. Several of these peptides also have other functions in physiology and behavior. Examples are corticotropin-releasing factor-like diuretic hormone (diuretic hormone 44; DH44) and leucokinin (LK), both of which induce fluid secretion by Malpighian tubules (MTs), but also regulate stress responses, feeding, circadian activity and other behaviors. Here, we investigated the functional relations between the LK and DH44 signaling systems. DH44 and LK peptides were only colocalized in a set of abdominal neurosecretory cells (ABLKs). Targeted knockdown of each of these peptides in ABLKs lead to increased resistance to desiccation, starvation and ionic stress. Food ingestion was diminished by knockdown of DH44, but not LK, and water retention was increased by LK knockdown only. Thus, the two colocalized peptides display similar systemic actions, but differ with respect to regulation of feeding and body water retention. We also demonstrated that DH44 and LK have additive effects on fluid secretion by MTs. It is likely that the colocalized peptides are coreleased from ABLKs into the circulation and act on the tubules where they target different cell types and signaling systems to regulate diuresis and stress tolerance. Additional targets seem to be specific for each of the two peptides and subserve regulation of feeding and water retention. Our data suggest that the ABLKs and hormonal actions are sufficient for many of the known DH44 and LK functions, and that the remaining neurons in the CNS play other functional roles.
0

Drosophila insulin-like peptide dilp1 increases lifespan and glucagon-like Akh expression epistatic to dilp2

Stephanie Post et al.Jul 30, 2018
+3
R
S
S
Insulin/IGF signaling (IIS) regulates essential processes including development, metabolism, and aging. The Drosophila genome encodes eight insulin/IGF-like peptide (dilp) paralogs, including tandem-encoded dilp1 and dilp2. Many reports show that longevity is increased by manipulations that decrease DILP2 in adults. In contrast, dilp1 is expressed primarily in pupal stages, but also during adult reproductive diapause, although we find that dilp1 is also highly expressed in adult dilp2 mutants under non-diapause conditions. The inverse expression of dilp1 and dilp2 suggests these genes interact to regulate aging. Here, we study dilp1 and dilp2 single and double mutants to describe epistatic and synergistic interactions affecting longevity, metabolism and adipokinetic hormone (AKH), a functional homolog of glucagon. Mutants of dilp2 extend lifespan and increase Akh mRNA and protein in a dilp1-dependent manner. Loss of dilp1 alone has no impact on these traits, whereas transgene expression of dilp1 increases lifespan in dilp1-dilp2 double mutants. On the other hand, dilp1 and dilp2 redundantly interact to control circulating sugar, starvation resistance and compensatory dilp5 expression. These later interactions do not correlate with patterns for how dilp1 and dilp2 affect longevity and AKH. Thus, repression or loss of dilp2 slows aging because its depletion induces dilp1, which acts as a pro-longevity factor. Likewise, dilp2 regulates Akh through epistatic interaction with dilp1. Akh and glycogen affect aging in C. elegans and Drosophila, suggesting that dilp2 modulates lifespan via dilp1 and in part by regulating Akh. Whether DILP1 acts as an insulin receptor agonist or inhibitor remains to be resolved.
1

The Alk receptor tyrosine kinase regulates Sparkly, a novel activity regulating neuropeptide precursor in theDrosophilaCNS

Sanjay Sukumar et al.Jun 5, 2023
+10
L
V
S
Abstract Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila , including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analysed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk/scRNA-seq and protein datasets from larval brains in which Alk signaling was manipulated, identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577 , which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (Clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.
Load More