TG
Timothy Gilpatrick
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
3,489
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Targeted nanopore sequencing with Cas9-guided adapter ligation

Timothy Gilpatrick et al.Feb 10, 2020
Despite recent improvements in sequencing methods, there remains a need for assays that provide high sequencing depth and comprehensive variant detection. Current methods1–4 are limited by the loss of native modifications, short read length, high input requirements, low yield or long protocols. In the present study, we describe nanopore Cas9-targeted sequencing (nCATS), an enrichment strategy that uses targeted cleavage of chromosomal DNA with Cas9 to ligate adapters for nanopore sequencing. We show that nCATS can simultaneously assess haplotype-resolved single-nucleotide variants, structural variations and CpG methylation. We apply nCATS to four cell lines, to a cell-line-derived xenograft, and to normal and paired tumor/normal primary human breast tissue. Median sequencing coverage was 675× using a MinION flow cell and 34× using the smaller Flongle flow cell. The nCATS sequencing requires only ~3 μg of genomic DNA and can target a large number of loci in a single reaction. The method will facilitate the use of long-read sequencing in research and in the clinic. Point mutations, structural variants and DNA methylation at target loci are assessed by nanopore sequencing.
0
Citation333
0
Save
0

Targeted Nanopore Sequencing with Cas9 for studies of methylation, structural variants, and mutations

Timothy Gilpatrick et al.Apr 11, 2019
Nanopore sequencing technology can rapidly and directly interrogate native DNA molecules. Often we are interested only in interrogating specific areas at high depth, but conventional enrichment methods have thus far proved unsuitable for long reads[1][1]. Existing strategies are currently limited by high input DNA requirements, low yield, short (<5kb) reads, time-intensive protocols, and/or amplification or cloning (losing base modification information). In this paper, we describe a technique utilizing the ability of Cas9 to introduce cuts at specific locations and ligating nanopore sequencing adaptors directly to those sites, a method we term ‘nanopore Cas9 Targeted-Sequencing’ (nCATS).We have demonstrated this using an Oxford Nanopore MinION flow cell (Capacity >10Gb+) to generate a median 165X coverage at 10 genomic loci with a median length of 18kb, representing a several hundred-fold improvement over the 2-3X coverage achieved without enrichment. We performed a pilot run on the smaller Flongle flow cell (Capacity ~1Gb), generating a median coverage of 30X at 11 genomic loci with a median length of 18kb. Using panels of guide RNAs, we show that the high coverage data from this method enables us to (1) profile DNA methylation patterns at cancer driver genes, (2) detect structural variations at known hot spots, and (3) survey for the presence of single nucleotide mutations. Together, this provides a low-cost method that can be applied even in low resource settings to directly examine cellular DNA. This technique has extensive clinical applications for assessing medically relevant genes and has the versatility to be a rapid and comprehensive diagnostic tool. We demonstrate applications of this technique by examining the well-characterized GM12878 cell line as well as three breast cell lines (MCF-10A, MCF-7, MDA-MB-231) with varying tumorigenic potential as a model for cancer.Contributions TG and WT constructed the study. TG performed the experiments. TG, IL, and FS analyzed the data. TG, JG, ER, RB and AH and developed the method. TG and WT wrote the paper [1]: #ref-1