MT
Maciej Trzaskowski
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(60% Open Access)
Cited by:
1,482
h-index:
51
/
i10-index:
86
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Socioeconomic Status (SES) and Children's Intelligence (IQ): In a UK-Representative Sample SES Moderates the Environmental, Not Genetic, Effect on IQ

Ken Hanscombe et al.Feb 1, 2012
Background The environment can moderate the effect of genes - a phenomenon called gene-environment (GxE) interaction. Several studies have found that socioeconomic status (SES) modifies the heritability of children's intelligence. Among low-SES families, genetic factors have been reported to explain less of the variance in intelligence; the reverse is found for high-SES families. The evidence however is inconsistent. Other studies have reported an effect in the opposite direction (higher heritability in lower SES), or no moderation of the genetic effect on intelligence. Methods Using 8716 twin pairs from the Twins Early Development Study (TEDS), we attempted to replicate the reported moderating effect of SES on children's intelligence at ages 2, 3, 4, 7, 9, 10, 12 and 14: i.e., lower heritability in lower-SES families. We used a twin model that allowed for a main effect of SES on intelligence, as well as a moderating effect of SES on the genetic and environmental components of intelligence. Results We found greater variance in intelligence in low-SES families, but minimal evidence of GxE interaction across the eight ages. A power calculation indicated that a sample size of about 5000 twin pairs is required to detect moderation of the genetic component of intelligence as small as 0.25, with about 80% power - a difference of 11% to 53% in heritability, in low- (−2 standard deviations, SD) and high-SES (+2 SD) families. With samples at each age of about this size, the present study found no moderation of the genetic effect on intelligence. However, we found the greater variance in low-SES families is due to moderation of the environmental effect – an environment-environment interaction. Conclusions In a UK-representative sample, the genetic effect on intelligence is similar in low- and high-SES families. Children's shared experiences appear to explain the greater variation in intelligence in lower SES.
0
Citation305
0
Save
0

Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder

Naomi Wray et al.Jul 24, 2017
Major depressive disorder (MDD) is a notably complex illness with a lifetime prevalence of 14%. 1 It is often chronic or recurrent and is thus accompanied by considerable morbidity, excess mortality, substantial costs, and heightened risk of suicide. 2-7 MDD is a major cause of disability worldwide. 8 We conducted a genome-wide association (GWA) meta-analysis in 130,664 MDD cases and 330,470 controls, and identified 44 independent loci that met criteria for statistical significance. We present extensive analyses of these results which provide new insights into the nature of MDD. The genetic findings were associated with clinical features of MDD, and implicated prefrontal and anterior cingulate cortex in the pathophysiology of MDD (regions exhibiting anatomical differences between MDD cases and controls). Genes that are targets of antidepressant medications were strongly enriched for MDD association signals (P=8.5×10 −10 ), suggesting the relevance of these findings for improved pharmacotherapy of MDD. Sets of genes involved in gene splicing and in creating isoforms were also enriched for smaller MDD GWA P-values, and these gene sets have also been implicated in schizophrenia and autism. Genetic risk for MDD was correlated with that for many adult and childhood onset psychiatric disorders. Our analyses suggested important relations of genetic risk for MDD with educational attainment, body mass, and schizophrenia: the genetic basis of lower educational attainment and higher body mass were putatively causal for MDD whereas MDD and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for MDD, and a continuous measure of risk underlies the observed clinical phenotype. MDD is not a distinct entity that neatly demarcates normalcy from pathology but rather a useful clinical construct associated with a range of adverse outcomes and the end result of a complex process of intertwined genetic and environmental effects. These findings help refine and define the fundamental basis of MDD.
0
Citation62
0
Save
0

Causal associations between risk factors and common diseases inferred from GWAS summary data

Zhihong Zhu et al.Jul 26, 2017
Abstract Health risk factors such as body mass index (BMI), serum cholesterol and blood pressure are associated with many common diseases. It often remains unclear whether the risk factors are cause or consequence of disease, or whether the associations are the result of confounding. Genetic methods are useful to infer causality because genetic variants are present from birth and therefore unlikely to be confounded with environmental factors. We develop and apply a method (GSMR) that performs a multi-SNP Mendelian Randomization analysis using summary-level data from large genome-wide association studies (sample sizes of up to 405,072) to test the causal associations of BMI, waist-to-hip ratio, serum cholesterols, blood pressures, height and years of schooling (EduYears) with a range of common diseases. We identify a number of causal associations including a protective effect of LDL-cholesterol against type-2 diabetes (T2D) that might explain the side effects of statins on T2D, a protective effect of EduYears against Alzheimer’s disease, and bidirectional associations with opposite effects (e.g. higher BMI increases the risk of T2D but the effect T2D of BMI is negative). HDL-cholesterol has a significant risk effect on age-related macular degeneration, and the effect size remains significant accounting for the other risk factors. Our study develops powerful tools to integrate summary data from large studies to infer causality, and provides important candidates to be prioritized for further studies in medical research and for drug discovery.
0
Citation61
0
Save
0

Automated AI labelling of optic nerve head enables new insights into cross-ancestry glaucoma risk and genetic discovery in over 280,000 images from the UK Biobank and Canadian Longitudinal Study on Aging

Xikun Han et al.Nov 5, 2020
Abstract Cupping of the optic nerve head, a highly heritable trait, is a hallmark of glaucomatous optic neuropathy. Two key parameters are vertical cup-to-disc ratio (VCDR) and vertical disc diameter (VDD). However, manual assessment often suffers from poor accuracy and is time-intensive. Here, we show convolutional neural network models can accurately estimate VCDR and VDD for 282,100 images from both UK Biobank and an independent study (Canadian Longitudinal Study on Aging), enabling cross-ancestry epidemiological studies and new genetic discovery for these optic nerve head parameters. Using the AI approach we perform a systematic comparison of the distribution of VCDR and VDD, and compare these with intraocular pressure and glaucoma diagnoses across various genetically determined ancestries, which provides an explanation for the high rates of normal tension glaucoma in East Asia. We then used the large number of AI gradings to conduct a more powerful genome-wide association study (GWAS) of optic nerve head parameters. Using the AI based gradings increased estimates of heritability by ~50% for VCDR and VDD. Our GWAS identified more than 200 loci for both VCDR and VDD (double the number of loci from previous studies), uncovers dozens of novel biological pathways, with many of the novel loci also conferring risk for glaucoma.
0
Citation2
0
Save
1

STimage:robust, confident and interpretable models for predicting gene markers from cancer histopathological images

Xiao Tan et al.May 14, 2023
Abstract Spatial transcriptomic (ST) data enables us to link tissue morphological features with thousands of unseen gene expression values, opening a horizon for breakthroughs in digital pathology. Models to predict the presence/absence, high/low, or continuous expression of a gene using images as the only input have a huge potential clinical applications, but such models require improvements in accuracy, interpretability, and robustness. We developed STimage models to estimate parameters of gene expression as distributions rather than fixed data points, thereby allowing for the essential quantification of uncertainty in the predicted results. We assessed aleatoric and epistemic uncertainty of the models across a diverse range of test cases and proposed an ensemble approach to improve the model performance and trust. STimage can train prediction models for one gene marker or a panel of markers and provides important interpretability analyses at a single-cell level, and in the histopathological annotation context. Through a comprehensive benchmarking with existing models, we found that STimage is more robust to technical variation in platforms, data types, and sample types. Using images from the cancer genome atlas, we showed that STimage can be applied to non-spatial omics data. STimage also performs better than other models when only a small training dataset is available. Overall, STimage contributes an important methodological advance needed for the potential application of spatial technology in cancer digital pathology.
0

Imprint of Assortative Mating on the Human Genome

Loïc Yengo et al.Apr 13, 2018
Non-random mate-choice with respect to complex traits is widely observed in humans, but whether this reflects true phenotypic assortment, environment (social homogamy) or convergence after choosing a partner is not known. Understanding the causes of mate choice is important, because assortative mating (AM) if based upon heritable traits, has genetic and evolutionary consequences. AM is predicted under Fisher's classical theory1 to induce a signature in the genome at trait-associated loci that can be detected and quantified. Here, we develop and apply a method to quantify AM on a specific trait by estimating the correlation (θ) between genetic predictors of the trait from SNPs on odd versus even chromosomes. We show by theory and simulation that the effect of AM can be distinguished from population stratification. We applied this approach to 32 complex traits and diseases using SNP data from ~400,000 unrelated individuals of European ancestry. We found significant evidence of AM for height (θ=3.2%) and educational attainment (θ=2.7%), both consistent with theoretical predictions. Overall, our results imply that AM involves multiple traits, affects the genomic architecture of loci that are associated with these traits and that the consequence of mate choice can be detected from a random sample of genomes.
Load More