In the early 1990s an outbreak of papaya ringspot virus (PRSV) in the papaya groves in the Puna district of Hawaii caused severe damage to an important crop. Since then, the planting of two transgenic cultivars resistant to the virus — called 'SunUp' and 'Rainbow' — has helped to maintain yields. SunUp is a transgenic red-fleshed fruit that expresses the coat protein gene of a mild mutant of PRSV, conferring resistance via post-transcriptional gene silencing. Rainbow is a yellow-fleshed (and therefore more popular) F1 hybrid bred from SunUp. Now the draft genome sequence of the SunUp strain of papaya has been determined — a first for a commercial virus-resistant transgenic fruit tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on the evolution of qualities such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating the volatile compounds that contribute to the characteristic flavour of papaya. On the cover, the disease-free transgenic Rainbow and the severely infected, stunted and dying non-transgenic Sunrise grow in adjoining plots. Researchers from Hawaii and an international consortium have produced a draft genome assembly for 'SunUp', the first commercial virus-resistant transgenic fruit tree. Comparison of this plant genome to those of Arabidopsis and others sheds light on evolution of characteristics such as biosynthesis, starch deposition, control of photosynthesis and pathways for creating volatile compounds. Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic fruit tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2,3,4,5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica’s distinguishing morpho-physiological, medicinal and nutritional properties.