JJ
Jessica Johnson
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(59% Open Access)
Cited by:
3,462
h-index:
36
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gene expression elucidates functional impact of polygenic risk for schizophrenia

Menachem Fromer et al.Sep 26, 2016
The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of subjects with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, they found that ∼20% of schizophrenia loci have variants that may contribute to altered gene expression and liability. Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
0
Citation1,027
0
Save
0

Regulation of tradeoffs between plant defenses against pathogens with different lifestyles

Steven Spoel et al.Nov 13, 2007
Plants activate distinct defense responses depending on the lifestyle of the attacker encountered. In these responses, salicylic acid (SA) and jasmonic acid (JA) play important signaling roles. SA induces defense against biotrophic pathogens that feed and reproduce on live host cells, whereas JA activates defense against necrotrophic pathogens that kill host cells for nutrition and reproduction. Cross-talk between these defense signaling pathways has been shown to optimize the response against a single attacker. However, its role in defense against multiple pathogens with distinct lifestyles is unknown. Here we show that infection with biotrophic Pseudomonas syringae , which induces SA-mediated defense, rendered plants more susceptible to the necrotrophic pathogen Alternaria brassicicola by suppression of the JA signaling pathway. This process was partly dependent on the cross-talk modulator NPR1. Surprisingly, this tradeoff was restricted to tissues adjacent to the site of initial infection; A. brassicicola infection in systemic tissue was not affected. Even more surprisingly, tradeoff occurred only with the virulent Pseudomonas strain. Avirulent strains that induced programmed cell death (PCD), an effective plant-resistance mechanism against biotrophs, did not cause suppression of JA-dependent defense. This result might be advantageous to the plant by preventing necrotrophic pathogen growth in tissues undergoing PCD. Our findings show that plants tightly control cross-talk between SA- and JA-dependent defenses in a previously unrecognized spatial and pathogen type-specific fashion. This process allows them to prevent unfavorable signal interactions and maximize their ability to concomitantly fend off multiple pathogens.
0
Citation654
0
Save
0

Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

Simon Gregory et al.Oct 22, 2009
Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders. We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR) gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR). Our analysis revealed a genomic deletion containing the oxytocin receptor gene, OXTR (MIM accession no.: 167055), previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband's affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate OXTR expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that OXTR mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls. Together, these data provide further evidence for the role of OXTR and the oxytocin signaling pathway in the etiology of autism and, for the first time, implicate the epigenetic regulation of OXTR in the development of the disorder. See the related commentary by Gurrieri and Neri: http://www.biomedcentral.com/1741-7015/7/63
0
Citation554
0
Save
1

Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions

Solveig Sieberts et al.Oct 12, 2020
Abstract The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis- eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
1
Citation305
0
Save
0

Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia

Menachem Fromer et al.May 9, 2016
Over 100 genetic loci harbor schizophrenia associated variants, yet how these common variants confer risk is uncertain. The CommonMind Consortium has sequenced dorsolateral prefrontal cortex RNA from schizophrenia cases (n=258) and control subjects (n=279), creating the largest publicly available resource to date of gene expression and its genetic regulation; ~5 times larger than the latest release of GTEx. Using this resource, we find that ~20% of the schizophrenia risk loci have common variants that could explain regulation of brain gene expression. In five loci, these variants modulate expression of a single gene: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Experimentally altered expression of three of them, FURIN, TSNARE1, and CNTN4, perturbs the proliferation and apoptotic index of neural progenitors and leads to neuroanatomical deficits in zebrafish. Furthermore, shRNA mediated knock-down of FURIN in neural progenitor cells derived from human induced pluripotent stem cells produces abnormal neural migration. Although 4.2% of genes (N = 693) display significant differential expression between cases and controls, 44% show some evidence for differential expression. All fold changes are ≤ 1.33, and an independent cohort yields similar differential expression for these 693 genes (r = 0.58). These findings are consistent with schizophrenia being highly polygenic, as has been reported in investigations of common and rare genetic variation. Co-expression analyses identify a gene module that shows enrichment for genetic associations and is thus relevant for schizophrenia. Taken together, these results pave the way for mechanistic interpretations of genetic liability for schizophrenia and other brain diseases.
Load More