OS
Olav Smeland
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(50% Open Access)
Cited by:
1,854
h-index:
38
/
i10-index:
91
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

Jeanne Savage et al.Jun 25, 2018
+114
S
P
J
Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
16
Citation959
3
Save
0

Common brain disorders are associated with heritable patterns of apparent aging of the brain

Tobias Kaufmann et al.Sep 24, 2019
+81
C
S
T
Common risk factors for psychiatric and other brain disorders are likely to converge on biological pathways influencing the development and maintenance of brain structure and function across life. Using structural MRI data from 45,615 individuals aged 3-96 years, we demonstrate distinct patterns of apparent brain aging in several brain disorders and reveal genetic pleiotropy between apparent brain aging in healthy individuals and common brain disorders.
0
Citation441
0
Save
0

Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

Min‐Tzu Lo et al.Dec 5, 2016
+19
J
D
M
Chi-Hua Chen and colleagues report a GWAS for five personality traits and identify four loci associated with extraversion and two associated with neuroticism at genome-wide significance. They find that the five personality traits are genetically correlated and identify genetic correlations between personality traits and psychiatric disorders. Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit–hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).
0
Citation405
0
Save
0

Beyond SNP Heritability: Polygenicity and Discoverability of Phenotypes Estimated with a Univariate Gaussian Mixture Model

Dominic Holland et al.May 24, 2017
+7
R
O
D
Abstract Estimating the polygenicity (proportion of causally associated single nucleotide polymorphisms (SNPs)) and discoverability (effect size variance) of causal SNPs for human traits is currently of considerable interest. SNP-heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from an extensive reference panel, to estimate these quantities from genome-wide association studies (GWAS) summary statistics. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities ranging from ≃ 2 × 10 −5 to ≃ 4 × 10 −3 , with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs reaching genome-wide significance at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation (or deflation from over-correcting of z-scores), and assessing compatibility of replication and discovery GWAS summary statistics. Author Summary There are ~10 million common variants in the genome of humans with European ancestry. For any particular phenotype a number of these variants will have some causal effect. It is of great interest to be able to quantify the number of these causal variants and the strength of their effect on the phenotype. Genome wide association studies (GWAS) produce very noisy summary statistics for the association between subsets of common variants and phenotypes. For any phenotype, these statistics collectively are difficult to interpret, but buried within them is the true landscape of causal effects. In this work, we posit a probability distribution for the causal effects, and assess its validity using simulations. Using a detailed reference panel of ~11 million common variants – among which only a small fraction are likely to be causal, but allowing for non-causal variants to show an association with the phenotype due to correlation with causal variants – we implement an exact procedure for estimating the number of causal variants and their mean strength of association with the phenotype. We find that, across different phenotypes, both these quantities – whose product allows for lower bound estimates of heritability – vary by orders of magnitude.
0
Citation12
0
Save
1

Multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology

Alexey Shadrin et al.Oct 23, 2020
+18
D
T
A
Abstract Brain morphology has been shown to be highly heritable, yet only a small portion of the heritability is explained by the genetic variants discovered so far. Here we exploit the distributed nature of genetic effects across the brain and apply the Multivariate Omnibus Statistical Test (MOSTest) to genome-wide association studies (GWAS) of vertex-wise structural magnetic resonance imaging (MRI) cortical measures from N=35,657 participants in the UK Biobank. We identified 695 loci for cortical surface area and 539 for cortical thickness, in total 780 unique genetic loci associated with cortical morphology. This reflects an approximate 10-fold increase compared to the commonly applied univariate GWAS methods. Power analysis indicates that applying MOSTest to vertex-wise structural MRI data triples the effective sample size compared to conventional univariate GWAS approaches. Functional follow up including gene-based analyses implicate 10% of all protein-coding genes and point towards pathways involved in neurogenesis and cell differentiation.
1
Citation9
0
Save
0

Beyond SNP Heritability: Polygenicity and Discoverability of Phenotypes Estimated with a Univariate Gaussian Mixture Model

Dominic Holland et al.Dec 17, 2018
+7
R
O
D
Abstract Of signal interest in the genetics of human traits is estimating their polygenicity (the proportion of causally associated single nucleotide polymorphisms (SNPs)) and the discoverability (or effect size variance) of the causal SNPs. Narrow-sense heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from an extensive reference panel, to estimate these quantities from genome-wide association studies (GWAS) summary statistics for SNPs with minor allele frequency >1%. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities ranging from ≃ 2 × 10 −5 to ≃ 4 × 10 −3 , with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation.
0
Citation9
0
Save
1

Multivariate genetic analysis of personality and cognitive traits reveals abundant pleiotropy and improves prediction

Guy Hindley et al.Mar 2, 2022
+15
D
A
G
Abstract Personality and cognition are heritable mental traits, and their genetic determinants may be distributed across interconnected brain functions. However, previous studies have employed univariate approaches which reduce complex traits to summary measures. We applied the “pleiotropy-informed” multivariate omnibus statistical test (MOSTest) to genome-wide association studies (GWAS) of 35 item and task-level measures of neuroticism and cognition from the UK Biobank (n=336,993). We identified 431 significant genetic loci and found evidence of abundant pleiotropy across personality and cognitive domains. Functional characterisation implicated genes with significant tissue-specific expression in all tested brain tissues and enriched in brain-specific gene-sets. We conditioned independent GWAS of the Big 5 personality traits and cognition on our multivariate findings, which boosted genetic discovery in other personality traits and improved polygenic prediction. These findings advance our understanding of the polygenic architecture of complex mental traits, indicating a prominence of pleiotropic genetic effects across higher-order domains of mental function. Graphical abstract
1
Citation3
0
Save
0

Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation

Oleksandr Frei et al.Dec 27, 2017
+9
O
D
O
ABSTRACT Accumulating evidence from genome wide association studies (GWAS) suggests an abundance of shared genetic influences among complex human traits and disorders, such as mental disorders. While current cross-trait analytical methods focus on genetic correlation between traits, we developed a novel statistical tool (MiXeR), which quantifies polygenic overlap independent of genetic correlation, using summary statistics from GWAS. MiXeR results can be presented as a Venn diagram of unique and shared polygenic components across traits. At 90% of SNP-heritability explained for each phenotype, MiXeR estimates that more than 9K variants causally influence schizophrenia, 7K influence bipolar disorder, and out of those variants 6.9K are shared between these two disorders, which have high genetic correlation. Further, MiXeR uncovers extensive polygenic overlap between schizophrenia and educational attainment. Despite a genetic correlation close to zero, these traits share more than 9K causal variants, while 3K additional variants only influence educational attainment. By considering the polygenicity, heritability and discoverability of complex phenotypes, MiXeR provides a more complete quantification of shared genetic architecture than offered by other available tools.
0
Citation3
0
Save
6

A human iPSC-astroglia neurodevelopmental model reveals divergent transcriptomic patterns in schizophrenia

Attila Szabó et al.Nov 7, 2020
+7
M
I
A
ABSTRACT While neurodevelopmental abnormalities have been associated with schizophrenia (SCZ), the role of astroglia in disease pathophysiology remains poorly understood. In this study we used a human induced pluripotent stem cell (iPSC)-derived astrocyte model to investigate the temporal patterns of astroglia differentiation during developmental stages critical for SCZ using RNA-sequencing. The model generated astrocyte-specific patterns of gene expression during differentiation, and demonstrated that these patterns correspond well to astroglia-specific expression signatures of in vivo cortical fetal development. Applying this model, we were able to identify SCZ-specific expression dynamics in human astrocytes, and found that SCZ-associated differentially expressed genes were significantly enriched in the medial prefrontal cortex, striatum, and temporal lobe, targeting VWA5A and ADAMTS19 . In addition, SCZ astrocytes displayed alterations in calcium signaling, and significantly decreased glutamate uptake and metalloproteinase activity relative to controls. These results provide strong support for the validity of our astrocyte model, and implicate novel transcriptional dynamics in astrocyte differentiation in SCZ together with functional changes that are potentially important biological components of SCZ pathology.
6
Citation2
0
Save
0

The dark side of the mean: brain structural heterogeneity in schizophrenia and its polygenic risk

Dag Alnæs et al.Sep 4, 2018
+27
A
D
D
Abstract Importance Between-subject variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients. However, such group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature Objective To compare brain structural variability between individuals with SZ and healthy controls (HC) and to test if respective variability reflects the polygenic risk for SZ (PRS) in HC. Design, Setting, and Participants We compared MRI derived cortical thickness and subcortical volumes between 2,010 healthy controls and 1,151 patients with SZ across 16 cohorts. Secondly, we tested for associations between PRS and MRI features in 12,490 participants from UK Biobank. Main Outcomes and Measures We modeled mean and dispersion effects of SZ and PRS using double generalized linear models. We performed vertex-wise analyses for thickness, and region-of-interest analysis for cortical, subcortical and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, controlling for intracranial volume and population covariates, test of robustness of PRS threshold, and outlier removal. Results Compared to controls, patients with SZ showed higher heterogeneity in cortical thickness, cortical and ventricle volumes, and hippocampal subfields. Higher PRS was associated with thinner frontal and temporal cortices, as well as smaller left CA2/3, but was not significantly associated with dispersion. Conclusion and relevance SZ is associated with substantial brain structural heterogeneity beyond the mean differences. These findings possibly reflect higher differential sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of SZ. Higher PRS for SZ was associated with thinner fronto-temporal cortices and smaller subcortical volumes, but there were no significant associations with the heterogeneity in these measures, i.e. the variability among individuals with high PRS were comparable to the variability among individuals with low PRS. This suggests that brain variability in SZ results from interactions between environmental and genetic factors that are not captured by the PGR. Factors contributing to heterogeneity in fronto-temporal cortices and hippocampus are thus key to further our understanding of how genetic and environmental factors shape brain biology in SZ. Key Points Question: Is schizophrenia and its polygenic risk associated with brain structural heterogeneity in addition to mean changes? Findings: In a sample of 1151 patients and 2010 controls, schizophrenia was associated with increased heterogeneity in fronto-temporal thickness, cortical, ventricle, and hippocampal volumes, besides robust reductions in mean estimates. In an independent sample of 12,490 controls, polygenic risk for schizophrenia was associated with thinner fronto-temporal cortices and smaller CA2/3 of the left hippocampus, but not with heterogeneity. Meaning: Schizophrenia is associated with increased inter-individual differences in brainstructure, possibly reflecting clinical heterogeneity, gene-environment interactions, or secondary disease factors.
0
Citation1
0
Save
Load More