Abstract Chemical cross-linking is used to stabilise protein structure with additional benefits of pathogen and toxin inactivation for vaccine use, but its use is restricted by potential induction of local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for the purposes of understanding function, or for inducing a biological outcome such as elicitation of antibodies to conformationally-sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its functional analysis and use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent EDC to cross-link two soluble Env trimers, selected well-folded trimers using an antibody affinity column, and transferred this process to good manufacturing practice (GMP) for clinical trial use. Cross-linking enhanced GMP trimer stability to biophysical and enzyme attack, and had broadly beneficial effects on morphology, antigenicity and immunogenicity. Cryo-EM analysis revealed that cross-linking essentially completely retained overall structure with RMSDs between unmodified and cross-linked Env trimers of 0.4-0.5 Å. Despite this negligible distortion of global trimer structure we identified individual inter-subunit, intra-subunit and intra-protomer cross-links. Thus, EDC cross-linking maintains protein folding, improves stability, and is readily transferred to GMP, consistent with use of this approach in probing protein structure/function relationships and in the design of vaccines.