AK
Amit Khera
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
30
(63% Open Access)
Cited by:
9,998
h-index:
54
/
i10-index:
121
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations

Amit Khera et al.Aug 8, 2018
A key public health need is to identify individuals at high risk for a given disease to enable enhanced screening or preventive therapies. Because most common diseases have a genetic component, one important approach is to stratify individuals based on inherited DNA variation1. Proposed clinical applications have largely focused on finding carriers of rare monogenic mutations at several-fold increased risk. Although most disease risk is polygenic in nature2–5, it has not yet been possible to use polygenic predictors to identify individuals at risk comparable to monogenic mutations. Here, we develop and validate genome-wide polygenic scores for five common diseases. The approach identifies 8.0, 6.1, 3.5, 3.2, and 1.5% of the population at greater than threefold increased risk for coronary artery disease, atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer, respectively. For coronary artery disease, this prevalence is 20-fold higher than the carrier frequency of rare monogenic mutations conferring comparable risk6. We propose that it is time to contemplate the inclusion of polygenic risk prediction in clinical care, and discuss relevant issues. Genome-wide polygenic risk scores derived from GWAS data for five common diseases can identify subgroups of the population with risk approaching or exceeding that of a monogenic mutation.
0
Citation2,343
0
Save
0

Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia

Amit Khera et al.Apr 3, 2016
Approximately 7% of American adults have severe hypercholesterolemia (untreated low-density lipoprotein [LDL] cholesterol ≥190 mg/dl), which may be due to familial hypercholesterolemia (FH). Lifelong LDL cholesterol elevations in FH mutation carriers may confer coronary artery disease (CAD) risk beyond that captured by a single LDL cholesterol measurement. This study assessed the prevalence of an FH mutation among those with severe hypercholesterolemia and determined whether CAD risk varies according to mutation status beyond the observed LDL cholesterol level. Three genes causative for FH (LDLR, APOB, and PCSK9) were sequenced in 26,025 participants from 7 case-control studies (5,540 CAD case subjects, 8,577 CAD-free control subjects) and 5 prospective cohort studies (11,908 participants). FH mutations included loss-of-function variants in LDLR, missense mutations in LDLR predicted to be damaging, and variants linked to FH in ClinVar, a clinical genetics database. Among 20,485 CAD-free control and prospective cohort participants, 1,386 (6.7%) had LDL cholesterol ≥190 mg/dl; of these, only 24 (1.7%) carried an FH mutation. Within any stratum of observed LDL cholesterol, risk of CAD was higher among FH mutation carriers than noncarriers. Compared with a reference group with LDL cholesterol <130 mg/dl and no mutation, participants with LDL cholesterol ≥190 mg/dl and no FH mutation had a 6-fold higher risk for CAD (odds ratio: 6.0; 95% confidence interval: 5.2 to 6.9), whereas those with both LDL cholesterol ≥190 mg/dl and an FH mutation demonstrated a 22-fold increased risk (odds ratio: 22.3; 95% confidence interval: 10.7 to 53.2). In an analysis of participants with serial lipid measurements over many years, FH mutation carriers had higher cumulative exposure to LDL cholesterol than noncarriers. Among participants with LDL cholesterol ≥190 mg/dl, gene sequencing identified an FH mutation in <2%. However, for any observed LDL cholesterol, FH mutation carriers had substantially increased risk for CAD.
0
Citation796
0
Save
0

Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program

Derek Klarin et al.Oct 1, 2018
The Million Veteran Program (MVP) was established in 2011 as a national research initiative to determine how genetic variation influences the health of US military veterans. Here we genotyped 312,571 MVP participants using a custom biobank array and linked the genetic data to laboratory and clinical phenotypes extracted from electronic health records covering a median of 10.0 years of follow-up. Among 297,626 veterans with at least one blood lipid measurement, including 57,332 black and 24,743 Hispanic participants, we tested up to around 32 million variants for association with lipid levels and identified 118 novel genome-wide significant loci after meta-analysis with data from the Global Lipids Genetics Consortium (total n > 600,000). Through a focus on mutations predicted to result in a loss of gene function and a phenome-wide association study, we propose novel indications for pharmaceutical inhibitors targeting PCSK9 (abdominal aortic aneurysm), ANGPTL4 (type 2 diabetes) and PDE3B (triglycerides and coronary disease). Analysis of genetic data and blood lipid measurements from over 300,000 participants in the Million Veteran Program identifies new associations for blood lipid traits.
0
Citation561
0
Save
1

A single-cell atlas of human and mouse white adipose tissue

Margo Emont et al.Mar 16, 2022
White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions. A single-cell atlas of white adipose tissue from mouse and human reveals diverse cell types and similarities and differences across species and dietary conditions.
1
Citation404
0
Save
0

ANGPTL3 Deficiency and Protection Against Coronary Artery Disease

Nathan Stitziel et al.Apr 1, 2017
Familial combined hypolipidemia, a Mendelian condition characterized by substantial reductions in all 3 major lipid fractions, is caused by mutations that inactivate the gene angiopoietin-like 3 (ANGPTL3). Whether ANGPTL3 deficiency reduces risk of coronary artery disease (CAD) is unknown.The study goal was to leverage 3 distinct lines of evidence-a family that included individuals with complete (compound heterozygote) ANGPTL3 deficiency, a population based-study of humans with partial (heterozygote) ANGPTL3 deficiency, and biomarker levels in patients with myocardial infarction (MI)-to test whether ANGPTL3 deficiency is associated with lower risk for CAD.We assessed coronary atherosclerotic burden in 3 individuals with complete ANGPTL3 deficiency and 3 wild-type first-degree relatives using computed tomography angiography. In the population, ANGPTL3 loss-of-function (LOF) mutations were ascertained in up to 21,980 people with CAD and 158,200 control subjects. LOF mutations were defined as nonsense, frameshift, and splice-site variants, along with missense variants resulting in <25% of wild-type ANGPTL3 activity in a mouse model. In a biomarker study, circulating ANGPTL3 concentration was measured in 1,493 people who presented with MI and 3,232 control subjects.The 3 individuals with complete ANGPTL3 deficiency showed no evidence of coronary atherosclerotic plaque. ANGPTL3 gene sequencing demonstrated that approximately 1 in 309 people was a heterozygous carrier for an LOF mutation. Compared with those without mutation, heterozygous carriers of ANGPTL3 LOF mutations demonstrated a 17% reduction in circulating triglycerides and a 12% reduction in low-density lipoprotein cholesterol. Carrier status was associated with a 34% reduction in odds of CAD (odds ratio: 0.66; 95% confidence interval: 0.44 to 0.98; p = 0.04). Individuals in the lowest tertile of circulating ANGPTL3 concentrations, compared with the highest, had reduced odds of MI (adjusted odds ratio: 0.65; 95% confidence interval: 0.55 to 0.77; p < 0.001).ANGPTL3 deficiency is associated with protection from CAD.
0
Citation386
0
Save
0

Genetic Association of Waist-to-Hip Ratio With Cardiometabolic Traits, Type 2 Diabetes, and Coronary Heart Disease

Connor Emdin et al.Feb 14, 2017

Importance

 In observational studies, abdominal adiposity has been associated with type 2 diabetes and coronary heart disease (CHD). Whether these associations represent causal relationships remains uncertain. 

Objective

 To test the association of a polygenic risk score for waist-to-hip ratio (WHR) adjusted for body mass index (BMI), a measure of abdominal adiposity, with type 2 diabetes and CHD through the potential intermediates of blood lipids, blood pressure, and glycemic phenotypes. 

Design, Setting, and Participants

 A polygenic risk score for WHR adjusted for BMI, a measure of genetic predisposition to abdominal adiposity, was constructed with 48 single-nucleotide polymorphisms. The association of this score with cardiometabolic traits, type 2 diabetes, and CHD was tested in a mendelian randomization analysis that combined case-control and cross-sectional data sets. Estimates for cardiometabolic traits were based on a combined data set consisting of summary results from 4 genome-wide association studies conducted from 2007 to 2015, including up to 322 154 participants, as well as individual-level, cross-sectional data from the UK Biobank collected from 2007-2011, including 111 986 individuals. Estimates for type 2 diabetes and CHD were derived from summary statistics of 2 separate genome-wide association studies conducted from 2007 to 2015 and including 149 821 individuals and 184 305 individuals, respectively, combined with individual-level data from the UK Biobank. 

Exposures

 Genetic predisposition to increased WHR adjusted for BMI. 

Main Outcomes and Measures

 Type 2 diabetes and CHD. 

Results

 Among 111 986 individuals in the UK Biobank, the mean age was 57 (SD, 8) years, 58 845 participants (52.5%) were women, and mean WHR was 0.875. Analysis of summary-level genome-wide association study results and individual-level UK Biobank data demonstrated that a 1-SD increase in WHR adjusted for BMI mediated by the polygenic risk score was associated with 27-mg/dL higher triglyceride levels, 4.1-mg/dL higher 2-hour glucose levels, and 2.1–mm Hg higher systolic blood pressure (eachP < .001). A 1-SD genetic increase in WHR adjusted for BMI was also associated with a higher risk of type 2 diabetes (odds ratio, 1.77 [95% CI, 1.57-2.00]; absolute risk increase per 1000 participant-years, 6.0 [95% CI, CI, 4.4-7.8]; number of participants with type 2 diabetes outcome, 40 530) and CHD (odds ratio, 1.46 [95% CI, 1.32-1.62]; absolute risk increase per 1000 participant-years, 1.8 [95% CI, 1.3-2.4]; number of participants with CHD outcome, 66 440). 

Conclusions and Relevance

 A genetic predisposition to higher waist-to-hip ratio adjusted for body mass index was associated with increased risk of type 2 diabetes and coronary heart disease. These results provide evidence supportive of a causal association between abdominal adiposity and these outcomes.
0
Citation337
0
Save
Load More