JL
Jing Liu
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
75
(68% Open Access)
Cited by:
449
h-index:
190
/
i10-index:
5428
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Emergence of Liquid Metals in Nanotechnology

Kourosh Kalantar‐zadeh et al.Jun 27, 2019
Bulk liquid metals have prospective applications as soft and fluid electrical and thermal conductors in electronic and optical devices, composites, microfluidics, robotics, and metallurgy with unique opportunities for processing, chemistry, and function. Yet liquid metals' great potential in nanotechnology remains in its infancy. Although work to date focuses primarily on Ga, Hg, and their alloys, to expand the field, we define "liquid metals" as metals and alloys with melting points (mp) up to 330 °C, readily accessible and processable even using household kitchen appliances. Such a definition encompasses a family of metals-including the majority of post-transition metals and Zn group elements (excluding Zn itself)-with remarkable versatility in chemistry, physics, and engineering. These liquid alloys can create metallic compounds of different morphologies, compositions, and properties, thereby enabling control over nanoscale phenomena. In addition, the presence of electronic and ionic "pools" within the bulk of liquid metals, as well as deviation from classical metallurgy on the surfaces of liquid metals, provides opportunities for gaining new capabilities in nanotechnology. For example, the bulk and surfaces of liquid metals can be used as reaction media for creating and manipulating nanomaterials, promoting reactions, or controlling crystallization of dissolved species. Interestingly, liquid metals have enormous surface tensions, yet the tension can be tuned electrically over a wide range or modified via surface species, such as the native oxides. The ability to control the interfacial tension allows these liquids to be readily reduced in size to the nanoscale. The liquid nature of such nanoparticles enables shape-reconfigurable structures, the creation of soft metallic nanocomposites, and the dissolution or dispersion of other materials within (or on) the metal to produce multiphasic or heterostructure particles. This Perspective highlights the salient features of these materials and seeks to raise awareness of future opportunities to understand and to utilize liquid metals for nanotechnology.
1

SARS-CoV-2 Infects Human Engineered Heart Tissues and Models COVID-19 Myocarditis

Adam Bailey et al.Nov 5, 2020
Abstract Epidemiological studies of the COVID-19 pandemic have revealed evidence of cardiac involvement and documented that myocardial injury and myocarditis are predictors of poor outcomes. Nonetheless, little is understood regarding SARS-CoV-2 tropism within the heart and whether cardiac complications result directly from myocardial infection. Here, we develop a human engineered heart tissue model and demonstrate that SARS-CoV-2 selectively infects cardiomyocytes. Viral infection is dependent on expression of angiotensin-I converting enzyme 2 (ACE2) and endosomal cysteine proteases, suggesting an endosomal mechanism of cell entry. After infection with SARS-CoV-2, engineered tissues display typical features of myocarditis, including cardiomyocyte cell death, impaired cardiac contractility, and innate immune cell activation. Consistent with these findings, autopsy tissue obtained from individuals with COVID-19 myocarditis demonstrated cardiomyocyte infection, cell death, and macrophage-predominate immune cell infiltrate. These findings establish human cardiomyocyte tropism for SARS-CoV-2 and provide an experimental platform for interrogating and mitigating cardiac complications of COVID-19.
1
Citation16
0
Save
61

Subcellular mRNA localization and local translation of Arhgap11a in radial glial cells regulates cortical development

Louis‐Jan Pilaz et al.Jul 31, 2020
Abstract mRNA localization and local translation enable exquisite spatial and temporal control of gene expression, particularly in highly polarized and elongated cells. These features are especially prominent in radial glial cells (RGCs), which serve as neural and glial precursors of the developing cerebral cortex, and scaffolds for migrating neurons. Yet the mechanisms by which distinct sub-cellular compartments of RGCs accomplish their diverse functions are poorly understood. Here, we demonstrate that subcellular RNA localization and translation of the RhoGAP Arhgap11a controls RGC morphology and mediates cortical cytoarchitecture. Arhgap11a mRNA and protein exhibit conserved localization to RGC basal structures in mice and humans, conferred by a 5′UTR cis-element. Proper RGC morphology relies upon active Arhgap11a mRNA transport and localization to basal structures, where ARHGAP11A is locally synthesized. Thus, RhoA activity is spatially and acutely activated via local translation in RGCs to promote neuron positioning and cortical cytoarchitecture. Altogether, our study demonstrates that mRNA localization and local translation mediate compartmentalization of neural progenitor functions to control brain development. Highlights Arhgap11a in radial glia non-cell autonomously promotes neuronal migration and lamination Arhgap11a mRNA localizes to radial glial endfeet via a 5’ UTR cis element ARHGAP11A expression in basal process and endfeet depends upon its localized mRNA Localized mRNA and RhoA-GAP activity in endfeet control radial glial morphology
61
Citation12
0
Save
0

Electrical triggering of earthquakes: results of laboratory experiments at spring-block models

В. Новиков et al.May 9, 2017
Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibility of electrical earthquake triggering. A physical mechanism of the considered phenomenon is not clear yet in view of the very low current density (10−7–10−8 A/m2) generated by the pulsed power systems at the epicenter depth (5–10 km) of local earthquakes occurred just after the current injection. The paper describes results of laboratory “earthquake” triggering by DC pulses under conditions of a spring-block model simulated the seismogenic fault. It is experimentally shown that the electric triggering of the laboratory “earthquake” (sharp slip of a movable block of the spring-block system) is possible only within a range of subcritical state of the system, when the shear stress between the movable and fixed blocks obtains 0.98–0.99 of its critical value. The threshold of electric triggering action is about 20 A/m2 that is 7–8 orders of magnitude higher than estimated electric current density for Bishkek test site (Northern Tien Shan, Kirghizia) where the seismic response to the man-made electric action was observed. In this connection, the electric triggering phenomena may be explained by contraction of electric current in the narrow conductive areas of the faults and the corresponding increase in current density or by involving the secondary triggering mechanisms like electromagnetic stimulation of conductive fluid migration into the fault area resulted in decrease in the fault strength properties.
0
Paper
Citation10
0
Save
5

Probing the SAM Binding Site of SARS-CoV-2 nsp14 in vitro Using SAM Competitive Inhibitors Guides Developing Selective bi-substrate Inhibitors

Kanchan Devkota et al.Feb 19, 2021
Abstract The COVID-19 pandemic has clearly brought the healthcare systems world-wide to a breaking point along with devastating socioeconomic consequences. The SARS-CoV-2 virus which causes the disease uses RNA capping to evade the human immune system. Non-structural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small molecule inhibitors of nsp14 methyltransferase (MT) activity, we developed and employed a radiometric MT assay to screen a library of 161 in house synthesized S-adenosylmethionine (SAM) competitive methyltransferase inhibitors and SAM analogs. Among seven identified screening hits, SS148 inhibited nsp14 MT activity with an IC 50 value of 70 ± 6 nM and was selective against 20 human protein lysine methyltransferases indicating significant differences in SAM binding sites. Interestingly, DS0464 with IC 50 value of 1.1 ± 0.2 μM showed a bi-substrate competitive inhibitor mechanism of action. Modeling the binding of this compound to nsp14 suggests that the terminal phenyl group extends into the RNA binding site. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein methyltransferases. The structure-activity relationship provided by these compounds should guide the optimization of selective bi-substrate nsp14 inhibitors and may provide a path towards a novel class of antivirals against COVID-19, and possibly other coronaviruses.
5
Paper
Citation8
0
Save
0

Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma

Helma Zecena et al.Dec 7, 2017
Abstract Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma. The cellular model evolved in response to clinical dosage of BRAF inhibitor, vemurafenib, PLX4032. We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis, MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway rewiring based on non-genomic adaptation was validated in two distinct melanoma models, SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential. Downregulation of tumor suppressors and negative MAPK regulators, dual specific phosphatases, reengages mitogenic signaling. Upregulation of growth factors or cytokine receptors triggers signaling pathways circumventing BRAF blockage. Changes in amino acid and one-carbon metabolism support cellular proliferation despite MAPK inhibitor treatment. In addition, an upregulation of pigmentation in inhibitor resistant melanoma cells was observed. Cellular pathways utilized during inhibitor resistance promoted melanogenesis, a pathway which partially overlaps with MAPK signaling. Upstream regulator analysis suggested gene expression changes of forkhead box and hypoxia inducible factor family transcription factors. The established cellular models offer mechanistic insight into cellular changes and therapeutic targets under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major rewiring while acquiring inhibitor resistance. The outcome of this transcriptional plasticity is selection for a set of transcriptional master regulators, which circumvent upstream targeted kinases and provide alternative routes of mitogenic activation. A fine-woven network of redundant signals maintains similar effector genes allowing for tumor cell survival and malignant progression in therapy resistant cancer.
0
Citation3
0
Save
Load More