CC
Carlo Colantuoni
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Johns Hopkins University, Johns Hopkins Medicine, University of Maryland, Baltimore
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
24
(75% Open Access)
Cited by:
447
h-index:
34
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types

Zizhen Yao et al.May 6, 2020
+80
F
H
Z
Abstract Single cell transcriptomics has transformed the characterization of brain cell identity by providing quantitative molecular signatures for large, unbiased samples of brain cell populations. With the proliferation of taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful cell types. We used a battery of single-cell transcriptome and epigenome measurements generated by the BRAIN Initiative Cell Census Network (BICCN) to comprehensively assess the molecular signatures of cell types in the mouse primary motor cortex (MOp). We further developed computational and statistical methods to integrate these multimodal data and quantitatively validate the reproducibility of the cell types. The reference atlas, based on more than 600,000 high quality single-cell or -nucleus samples assayed by six molecular modalities, is a comprehensive molecular account of the diverse neuronal and non-neuronal cell types in MOp. Collectively, our study indicates that the mouse primary motor cortex contains over 55 neuronal cell types that are highly replicable across analysis methods, sequencing technologies, and modalities. We find many concordant multimodal markers for each cell type, as well as thousands of genes and gene regulatory elements with discrepant transcriptomic and epigenomic signatures. These data highlight the complex molecular regulation of brain cell types and will directly enable design of reagents to target specific MOp cell types for functional analysis.
0
Citation45
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
1

gEAR: gene Expression Analysis Resource portal for community-driven, multi-omic data exploration

Joshua Orvis et al.Oct 24, 2023
+19
J
B
J
ABSTRACT The gEAR portal (gene Expression Analysis Resource, umgear.org) is an open access community-driven tool for multi-omic and multi-species data visualization, analysis and sharing. The gEAR supports visualization of multiple RNA-seq data types (bulk, sorted, single cell/nucleus) and epigenomics data, from multiple species, time points and tissues in a single-page, user-friendly browsable format. An integrated scRNA-seq workbench provides access to raw data of scRNA-seq datasets for de novo analysis, as well as marker-gene and cluster comparisons of pre-assigned clusters. Users can upload, view, analyze and privately share their own data in the context of previously published datasets. Short, permanent URLs can be generated for dissemination of individual or collections of datasets in published manuscripts. While the gEAR is currently curated for auditory research with over 90 high-value datasets organized in thematic profiles, the gEAR also supports the BRAIN initiative (via nemoanalytics.org) and is easily adaptable for other research domains.
1
Paper
Citation10
0
Save
0

Eliminating accidental deviations to minimize generalization error and maximize replicability: applications in connectomics and genomics

Eric Bridgeford et al.May 7, 2020
+14
Z
S
E
Abstract Replicability, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility. Troublingly, we are in the midst of a replicability crisis. A key to replicability is that multiple measurements of the same item (e.g., experimental sample or clinical participant) under fixed experimental constraints are relatively similar to one another. Thus, statistics that quantify the relative contributions of accidental deviations—such as measurement error—as compared to systematic deviations—such as individual differences—are critical. We demonstrate that existing replicability statistics, such as intra-class correlation coefficient and fingerprinting, fail to adequately differentiate between accidental and systematic deviations in very simple settings. We therefore propose a novel statistic, discriminability , which quantifies the degree to which an individual’s samples are relatively similar to one another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statistic, we introduce the possibility of optimizing experimental design via increasing discriminability and prove that optimizing discriminability improves performance bounds in subsequent inference tasks. In extensive simulated and real datasets (focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability improves performance on all subsequent inference tasks for each dataset. We therefore suggest that designing experiments and analyses to optimize discriminability may be a crucial step in solving the replicability crisis, and more generally, mitigating accidental measurement error. Author Summary In recent decades, the size and complexity of data has grown exponentially. Unfortunately, the increased scale of modern datasets brings many new challenges. At present, we are in the midst of a replicability crisis, in which scientific discoveries fail to replicate to new datasets. Difficulties in the measurement procedure and measurement processing pipelines coupled with the influx of complex high-resolution measurements, we believe, are at the core of the replicability crisis. If measurements themselves are not replicable, what hope can we have that we will be able to use the measurements for replicable scientific findings? We introduce the “discriminability” statistic, which quantifies how discriminable measurements are from one another, without limitations on the structure of the underlying measurements. We prove that discriminable strategies tend to be strategies which provide better accuracy on downstream scientific questions. We demonstrate the utility of discriminability over competing approaches in this context on two disparate datasets from both neuroimaging and genomics. Together, we believe these results suggest the value of designing experimental protocols and analysis procedures which optimize the discriminability.
4

Single-nucleus RNA-seq reveals dysregulation of striatal cell identity due to Huntington’s disease mutations

Sonia Malaiya et al.Oct 24, 2023
+6
B
M
S
ABSTRACT Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide expansion in exon 1 of the huntingtin ( Htt ) gene. Cell death in HD occurs primarily in striatal medium spiny neurons (MSNs), but the involvement of specific MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into cell type-specific disease processes, we studied the nuclear transcriptomes of 4,524 cells from the striatum of a genetically precise knock-in mouse model of the HD mutation, Htt Q175/+ , and from wildtype controls. We used 14-15-month-old mice, a time point roughly equivalent to an early stage of symptomatic human disease. Cell type distributions indicated selective loss of D2 MSNs and increased microglia in aged Htt Q175/+ mice. Thousands of differentially expressed genes were distributed across most striatal cell types, including transcriptional changes in glial populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell typespecific transcriptional networks revealed a striking pattern of bidirectional dysregulation for many cell type-specific genes. Typically, these genes were repressed in their primary cell type, yet de-repressed in other striatal cell types. Integration with existing epigenomic and transcriptomic data suggest that partial loss-of-function of the Polycomb Repressive Complex 2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the maintenance of cell identity across virtually all cell types in the adult striatum.
4
Citation4
0
Save
0

Placental gene expression mediates the interaction between obstetrical history and genetic risk for schizophrenia

Gianluca Ursini et al.May 7, 2020
+20
Q
G
G
Abstract Defining the environmental context in which genes enhance susceptibility can provide insight into the pathogenesis of complex disorders, like schizophrenia. Here we show that the intrauterine and perinatal environment modulates the association of schizophrenia with genomic risk, as measured with polygenic risk scores (PRS) based primarily on GWAS significant variants. Genomic risk interacts with intrauterine and perinatal complications (Early Life Complications, ELCs) in each of three independent samples from USA, Italy and Germany (overall n= 1693, p= 6e-05). In each sample, the liability of schizophrenia explained by PRS is nominally more than five times greater in the presence of a history of ELCs compared with its absence. In each sample, patients with positive ELC histories have higher PRS than patients without ELCs, which is further confirmed in two additional patient samples from Germany and Japan (overall n=2038, p= 1e-04). The gene set based on the schizophrenia loci interacting with ELCs is highly expressed in multiple placental compartments and dynamically regulated in placenta from complicated in comparison with normal pregnancies. The same genes are differentially up-regulated in placentae from male compared with female offspring. The interaction between genomic risk and ELCs is mainly driven by GWAS significant loci enriched for genes highly expressed in the various placenta samples. Molecular pathway analyses based on the genes not driving this interaction reflect previous analyses about schizophrenia risk-genes, while genes highly and differentially expressed in placentae implicate an orthogonal biology involving cellular stress. These results suggest that the most significant genetic variants detected by current schizophrenia GWAS contribute to risk in part by converging on a developmental trajectory sensitive to events affecting placentation, which may underlie the male preponderance of schizophrenia and offer new insights into primary prevention.
0
Paper
Citation3
0
Save
5

Single-cell genomics reveals region-specific developmental trajectories underlying neuronal diversity in the human hypothalamus

Brian Herb et al.Oct 24, 2023
+9
A
H
B
Abstract The development and diversity of neuronal subtypes in the human hypothalamus has been insufficiently characterized. We sequenced the transcriptomes of 40,927 cells from the prenatal human hypothalamus spanning from 6 to 25 gestational weeks and 25,424 mature neurons in regions of the adult human hypothalamus, revealing a temporal trajectory from proliferative stem cell populations to mature neurons and glia. Developing hypothalamic neurons followed branching trajectories leading to 170 transcriptionally distinct neuronal subtypes in ten hypothalamic nuclei in the adult. The uniqueness of hypothalamic neuronal lineages was examined developmentally by comparing excitatory lineages present in cortex and inhibitory lineages in ganglionic eminence from the same individuals, revealing both distinct and shared drivers of neuronal maturation across the human forebrain. Cross-species comparisons to the mouse hypothalamus identified human-specific POMC populations expressing unique combinations of transcription factors and neuropeptides. These results provide the first comprehensive transcriptomic view of human hypothalamus development at cellular resolution. One-Sentence Summary Using single-cell genomics, we reconstructed the developmental lineages by which precursor populations give rise to 170 distinct neuronal subtypes in the human hypothalamus.
5
Citation3
0
Save
1

Regulome-wide association study identifies enhancer properties associated with risk for schizophrenia

Alex Casella et al.Oct 24, 2023
S
C
A
ABSTRACT Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new framework to identify the characteristics of enhancers that contribute to genetic risk for disease. Applying our technique to interrogate genetic risk for schizophrenia, we found that risk-associated enhancers in this disease are predominantly active in the brain, evolutionarily conserved, and AT-rich. The association between AT percentage and risk corresponds to an overrepresentation in risk-associated enhancers for the binding sites of transcription factors that recognize AT-rich cis-regulatory motifs. Several of the TFs identified in our model as being overrepresented in risk-associated enhancers, including MEF2C, are master regulators of neuronal development. The genes that encode several of these TFs are themselves located at genetic risk loci for schizophrenia. This list also includes brain-expressed TFs that have not previously been linked to schizophrenia. In summary, we developed a generalizable approach that integrates GWAS summary statistics with enhancer characteristics to identify risk factors in tissue-specific regulatory regions. AUTHOR SUMMARY Enhancers are regulatory regions that influence gene expression via the binding of transcription factors. Risk for many heritable diseases is enriched in regulatory regions, including enhancers. In this study, we introduce a novel method of testing for association between enhancer attributes and risk and use this method to determine the enhancer characteristics that are associated with risk for schizophrenia. We found that enhancers associated with schizophrenia risk are both evolutionarily conserved and in physical contact with mutation-intolerant genes, many of which have neurodevelopmental functions. Risk-associated enhancers are also AT-rich and contain binding sites for neurodevelopmental transcription factors.
1
Citation2
0
Save
5

Insights for disease modeling from single cell transcriptomics of iPSC-derived Ngn2-induced neurons and astrocytes across differentiation time and co-culture

Debamitra Das et al.Oct 24, 2023
+6
G
S
D
ABSTRACT Trans-differentiation of human induced pluripotent stem cells into neurons via Ngn2-induction (hiPSC-N) has become an efficient system to quickly generate neurons for disease modeling and in vitro assay development, a significant advance from previously used neoplastic and other cell lines. Recent single-cell interrogation of Ngn2-induced neurons however, has revealed some similarities to unexpected neuronal lineages. Similarly, a straightforward method to generate hiPSC derived astrocytes (hiPSC-A) for the study of neuropsychiatric disorders has also been described. Here we examine the homogeneity and similarity of hiPSC-N and hiPSC-A to their in vivo counterparts, the impact of different lengths of time post Ngn2 induction on hiPSC-N (15 or 21 days) and of hiPSC-N / hiPSC-A co-culture. Leveraging the wealth of existing public single-cell RNA-seq (scRNA-seq) data in Ngn2-induced neurons and in vivo data from the developing brain, we provide perspectives on the lineage origins and maturation of hiPSC-N and hiPSC-A. While induction protocols in different labs produce consistent cell type profiles, both hiPSC-N and hiPSC-A show significant heterogeneity and similarity to multiple in vivo cell fates, and both more precisely approximate their in vivo counterparts when co-cultured. Gene expression data from the hiPSC-N show enrichment of genes linked to schizophrenia (SZ) and autism spectrum disorders (ASD) as has been previously shown for neural stem cells and neurons. These overrepresentations of disease genes are strongest in our system at early times (day 15) in Ngn2-induction/maturation of neurons, when we also observe the greatest similarity to early in vivo excitatory neurons. We have assembled this new scRNA-seq data along with the public data explored here as an integrated biologist-friendly web-resource for researchers seeking to understand this system more deeply: nemoanalytics.org/p?l=DasEtAlNGN2&g=PRPH.
5
Paper
Citation2
0
Save
5

Cochlear organoids reveal epigenetic and transcriptional programs of postnatal hair cell differentiation from supporting cells

Gurmannat Kalra et al.Oct 24, 2023
+10
D
D
G
ABSTRACT We explored the transcriptional and epigenetic programs underlying the differentiation of hair cells from postnatal progenitor cells in cochlear organoids. Heterogeneity in the cells including cells with the transcriptional signatures of mature hair cells allowed a full picture of possible cell fates. Construction of trajectories identified Lgr5+ cells as progenitors for hair cells and the genomic data revealed gene regulatory networks leading to hair cells. We validated these networks, demonstrating dynamic changes both in expression and predicted binding sites of these transcription factors during organoid differentiation. We identified known regulators of hair cell development, Atoh1, Pou4f3 , and Gfi1 , and predicted novel regulatory factors, Tcf4 , an E-protein and heterodimerization partner of Atoh1, and Ddit3 , a CCAAT/enhancer-binding protein (C/EBP) that represses Hes1 and activates transcription of Wnt signaling-related genes. Deciphering the signals for hair cell regeneration from mammalian cochlear supporting cells reveals candidates for HC regeneration which is limited in the adult.
5
Paper
Citation1
0
Save
Load More