FZ
Friedemann Zenke
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(88% Open Access)
Cited by:
3,022
h-index:
27
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

A deep learning framework for neuroscience

Blake Richards et al.Oct 28, 2019
Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In artificial neural networks, the three components specified by design are the objective functions, the learning rules and the architectures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components have increasingly become central to how we model, engineer and optimize complex artificial learning systems. Here we argue that a greater focus on these components would also benefit systems neuroscience. We give examples of how this optimization-based framework can drive theoretical and experimental progress in neuroscience. We contend that this principled perspective on systems neuroscience will help to generate more rapid progress. A deep network is best understood in terms of components used to design it—objective functions, architecture and learning rules—rather than unit-by-unit computation. Richards et al. argue that this inspires fruitful approaches to systems neuroscience.
0

SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks

Friedemann Zenke et al.Apr 13, 2018
A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.
37

The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural networks

Friedemann Zenke et al.Jun 29, 2020
Abstract Brains process information in spiking neural networks. Their intricate connections shape the diverse functions these networks perform. In comparison, the functional capabilities of models of spiking networks are still rudimentary. This shortcoming is mainly due to the lack of insight and practical algorithms to construct the necessary connectivity. Any such algorithm typically attempts to build networks by iteratively reducing the error compared to a desired output. But assigning credit to hidden units in multi-layered spiking networks has remained challenging due to the non-differentiable nonlinearity of spikes. To avoid this issue, one can employ surrogate gradients to discover the required connectivity in spiking network models. However, the choice of a surrogate is not unique, raising the question of how its implementation influences the effectiveness of the method. Here, we use numerical simulations to systematically study how essential design parameters of surrogate gradients impact learning performance on a range of classification problems. We show that surrogate gradient learning is robust to different shapes of underlying surrogate derivatives, but the choice of the derivative’s scale can substantially affect learning performance. When we combine surrogate gradients with a suitable activity regularization technique, robust information processing can be achieved in spiking networks even at the sparse activity limit. Our study provides a systematic account of the remarkable robustness of surrogate gradient learning and serves as a practical guide to model functional spiking neural networks.
93

A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network

Basile Confavreux et al.Oct 25, 2020
Abstract The search for biologically faithful synaptic plasticity rules has resulted in a large body of models. They are usually inspired by – and fitted to – experimental data, but they rarely produce neural dynamics that serve complex functions. These failures suggest that current plasticity models are still under-constrained by existing data. Here, we present an alternative approach that uses meta-learning to discover plausible synaptic plasticity rules. Instead of experimental data, the rules are constrained by the functions they implement and the structure they are meant to produce. Briefly, we parameterize synaptic plasticity rules by a Volterra expansion and then use supervised learning methods (gradient descent or evolutionary strategies) to minimize a problem-dependent loss function that quantifies how effectively a candidate plasticity rule transforms an initially random network into one with the desired function. We first validate our approach by re-discovering previously described plasticity rules, starting at the single-neuron level and “Oja’s rule”, a simple Hebbian plasticity rule that captures the direction of most variability of inputs to a neuron (i.e., the first principal component). We expand the problem to the network level and ask the framework to find Oja’s rule together with an anti-Hebbian rule such that an initially random two-layer firing-rate network will recover several principal components of the input space after learning. Next, we move to networks of integrate-and-fire neurons with plastic inhibitory afferents. We train for rules that achieve a target firing rate by countering tuned excitation. Our algorithm discovers a specific subset of the manifold of rules that can solve this task. Our work is a proof of principle of an automated and unbiased approach to unveil synaptic plasticity rules that obey biological constraints and can solve complex functions.
1

The combination of Hebbian and predictive plasticity learns invariant object representations in deep sensory networks

Manu Halvagal et al.Mar 19, 2022
Abstract Discriminating distinct objects and concepts from sensory stimuli is essential for survival. Our brains accomplish this feat by forming disentangled internal representations in deep sensory networks shaped through experience-dependent synaptic plasticity. To elucidate the principles that underlie sensory representation learning, we derive a local plasticity model that shapes latent representations to predict future activity. This Latent Predictive Learning (LPL) rule conceptually extends Bienenstock-Cooper-Munro (BCM) theory by unifying Hebbian plasticity with predictive learning. We show that deep neural networks equipped with LPL develop disentangled object representations without supervision. The same rule accurately captures neuronal selectivity changes observed in the primate inferotemporal cortex in response to altered visual experience. Finally, our model generalizes to spiking neural networks and naturally accounts for several experimentally observed properties of synaptic plasticity, including metaplasticity and spike-timing-dependent plasticity (STDP). We thus provide a plausible normative theory of representation learning in the brain while making concrete testable predictions.
20

Nonlinear transient amplification in recurrent neural networks with short-term plasticity

Yue Wu et al.Jun 10, 2021
Abstract To rapidly process information, neural circuits have to amplify specific activity patterns transiently. How the brain performs this nonlinear operation remains elusive. Hebbian assemblies are one possibility whereby symmetric excitatory connections boost neuronal activity. However, such Hebbian amplification is often associated with dynamical slowing of network dynamics, non-transient attractor states, and pathological run-away activity. Feedback inhibition can alleviate these effects but typically linearizes responses and reduces amplification gain. At the same time, other alternative mechanisms rely on asymmetric connectivity, in conflict with the Hebbian doctrine. Here we propose nonlinear transient amplification (NTA), a plausible circuit mechanism that reconciles symmetric connectivity with rapid amplification while avoiding the above issues. NTA has two distinct temporal phases. Initially, positive feedback excitation selectively amplifies inputs that exceed a critical threshold. Subsequently, short-term plasticity quenches the run-away dynamics into an inhibition-stabilized network state. By characterizing NTA in supralinear network models, we establish that the resulting onset transients are stimulus selective and well-suited for speedy information processing. Further, we find that excitatory-inhibitory co-tuning widens the parameter regime in which NTA is possible. In summary, NTA provides a parsimonious explanation for how excitatory-inhibitory co-tuning and short-term plasticity collaborate in recurrent networks to achieve transient amplification.
Load More