HG
Hani Goodarzi
Author with expertise in RNA Methylation and Modification in Gene Expression
Computational Sciences (United States), UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco
+ 11 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
45
(87% Open Access)
Cited by:
102
h-index:
42
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
154

Androgen Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men

Zaniar Ghazizadeh et al.Oct 13, 2023
+10
M
H
Z
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to a global health crisis, and yet our understanding of the disease pathophysiology and potential treatment options remains limited. SARS-CoV-2 infection occurs through binding and internalization of the viral spike protein to angiotensin converting enzyme 2 (ACE2) on the host cell membrane. Lethal complications are caused by damage and failure of vital organs that express high levels of ACE2, including the lungs, the heart and the kidneys. Here, we established a high-throughput drug screening strategy to identify therapeutic candidates that reduce ACE2 levels in human embryonic stem cell (hESC) derived cardiac cells. Drug target analysis of validated hit compounds, including 5 alpha reductase inhibitors, revealed androgen signaling as a key modulator of ACE2 levels. Treatment with the 5 alpha reductase inhibitor dutasteride reduced ACE2 levels and internalization of recombinant spike receptor binding domain (Spike-RBD) in hESC-derived cardiac cells and human alveolar epithelial cells. Finally, clinical data on coronavirus disease 2019 (COVID-19) patients demonstrated that abnormal androgen states are significantly associated with severe disease complications and cardiac injury as measured by blood troponin T levels. These findings provide important insights on the mechanism of increased disease susceptibility in male COVID-19 patients and identify androgen receptor inhibition as a potential therapeutic strategy.
154
Citation43
0
Save
20

A focal adhesion kinase-YAP signaling axis drives drug tolerant persister cells and residual disease in lung cancer

Franziska Haderk et al.Oct 24, 2023
+30
L
C
F
Abstract Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant tumor cells which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.
20
Paper
Citation12
0
Save
35

An mRNA processing pathway suppresses metastasis by governing translational control from the nucleus

Albertas Navickas et al.Oct 24, 2023
+14
J
H
A
Abstract Cancer cells often co-opt post-transcriptional regulatory mechanisms to achieve pathologic expression of gene networks that drive metastasis. Translational control is a major regulatory hub in oncogenesis, however its effects on cancer progression remain poorly understood. To address this, we used ribosome profiling to compare genome-wide translation efficiencies of poorly and highly metastatic breast cancer cells and patient-derived xenografts. We developed novel regression-based methods to analyze ribosome profiling and alternative polyadenylation data, and identified HNRNPC as a translational controller of a specific mRNA regulon. Mechanistically, HNRNPC, in concert with PABPC4, binds near to poly(A) signals, thereby governing the alternative polyadenylation of a set of mRNAs. We found that HNRNPC and PABPC4 are downregulated in highly metastatic cells, which causes HNRNPC-bound mRNAs to undergo 3’ UTR lengthening and subsequently, translational repression. We showed that modulating HNRNPC expression impacts the metastatic capacity of breast cancer cells in xenograft mouse models. We also found that a small molecule, previously shown to induce a distal-to-proximal poly(A) site switching, counteracts the HNRNPC-PABPC4 driven deregulation of alternative polyadenylation and decreases the metastatic lung colonization by breast cancer cells in vivo .
58

hPSC-Derived Enteric Ganglioids Model Human ENS Development and Function

Homa Majd et al.Oct 24, 2023
+19
J
R
H
Abstract The enteric nervous system (ENS) plays a central role in gut physiology and mediating the crosstalk between the gastrointestinal (GI) tract and other organs. The human ENS has remained elusive, highlighting the need for an in vitro modeling and mapping blueprint. Here we map out the developmental and functional features of the human ENS, by establishing robust and scalable 2D ENS cultures and 3D enteric ganglioids from human pluripotent stem cells (hPSCs). These models recapitulate the remarkable neuronal and glial diversity found in primary tissue and enable comprehensive molecular analyses that uncover functional and developmental relationships within these lineages. As a salient example of the power of this system, we performed in-depth characterization of enteric nitrergic neurons (NO neurons) which are implicated in a wide range of GI motility disorders. We conducted an unbiased screen and identified drug candidates that modulate the activity of NO neurons and demonstrated their potential in promoting motility in mouse colonic tissue ex vivo . We established a high-throughput strategy to define the developmental programs involved in NO neuron specification and discovered that PDGFR inhibition boosts the induction of NO neurons in enteric ganglioids. Transplantation of these ganglioids in the colon of NO neuron-deficient mice results in extensive tissue engraftment, providing a xenograft model for the study of human ENS in vivo and the development of cell-based therapies for neurodegenerative GI disorders. These studies provide a framework for deciphering fundamental features of the human ENS and designing effective strategies to treat enteric neuropathies.
1

ENPP1 is an innate immune checkpoint of the anticancer cGAMP–STING pathway in breast cancer

Songnan Wang et al.Dec 22, 2023
+11
A
V
S
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer stimulator of interferon genes (STING) pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single-cell RNA-seq, we show that ENPP1 in both cancer and normal tissues drives primary breast tumor growth and metastasis by dampening extracellular 2′3′-cyclic-GMP-AMP (cGAMP)–STING-mediated antitumoral immunity. ENPP1 loss-of-function in both cancer cells and normal tissues slowed primary tumor growth and abolished metastasis. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied ENPP1 knockout in a STING-dependent manner, demonstrating that restoration of paracrine cGAMP–STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Finally, ENPP1 expression in breast tumors deterministically predicated whether patients would remain free of distant metastasis after pembrolizumab (anti-PD-1) treatment followed by surgery. Altogether, ENPP1 blockade represents a strategy to exploit cancer-produced extracellular cGAMP for controlled local activation of STING and is therefore a promising therapeutic approach against breast cancer.
0

A stress-induced Tyrosine tRNA depletion response mediates codon-based translational repression and growth suppression

Doowon Huh et al.May 7, 2020
+9
J
M
D
SUMMARY Eukaryotic transfer RNAs can become selectively fragmented upon various stresses, generating tRNA-derived small RNA fragments. Such fragmentation has been reported to impact a small fraction of the tRNA pool and thus presumed to not directly impact translation. We report that oxidative stress can rapidly generate tyrosine tRNA GUA fragments in human cells—causing significant depletion of the precursor tRNA. Tyrosine tRNA GUA depletion impaired translation of growth and metabolic genes enriched in cognate tyrosine codons. Depletion of tyrosine tRNA GUA or its translationally regulated targets USP3 and SCD repressed proliferation—revealing a dedicated tRNA-regulated growth suppressive pathway for oxidative stress response. Tyrosine fragments are generated in a DIS3L2 exoribonuclease-dependent manner and inhibit hnRNPA1-mediated transcript destabilization. Moreover, tyrosine fragmentation is conserved in C. elegans . Thus, tRNA fragmentation can coordinately generate trans -acting small-RNAs and functionally deplete a tRNA. Our findings reveal the existence of an underlying adaptive codon-based regulatory response inherent to the genetic code.
0
Citation4
0
Save
15

Single-fiber nucleosome density shapes the regulatory output of a mammalian chromatin remodeling enzyme

Nour Abdulhay et al.Oct 24, 2023
+9
C
L
N
ABSTRACT ATP-dependent chromatin remodelers regulate the DNA accessibility required of virtually all nuclear processes. Biochemical studies have provided insight into remodeler action at the nucleosome level, but how these findings translate to activity on chromatin fibers in vitro and in vivo remains poorly understood. Here, we present a massively multiplex single-molecule platform allowing high-resolution mapping of nucleosomes on fibers assembled on mammalian genomic sequences. We apply this method to distinguish between competing models for chromatin remodeling by the essential ISWI ATPase SNF2h: linker-length-dependent dynamic positioning versus fixed-linker-length static clamping. Our single-fiber data demonstrate that SNF2h operates as a density-dependent, length-sensing chromatin remodeler whose ability to decrease or increase DNA accessibility depends on single-fiber nucleosome density. In vivo , this activity manifests as different regulatory modes across epigenomic domains: at canonically-defined heterochromatin, SNF2h generates evenly-spaced nucleosome arrays of multiple nucleosome repeat lengths; at SNF2h-dependent accessible sites, SNF2h slides nucleosomes to increase accessibility of motifs for the essential transcription factor CTCF. Overall, our generalizable approach provides molecularly-precise views of the processes that shape nuclear physiology. Concurrently, our data illustrate how a mammalian chromatin remodeling enzyme can effectively sense nucleosome density to induce diametrically-opposed regulatory effects within the nucleus.
15
Citation4
0
Save
1

A global cancer data integrator reveals principles of synthetic lethality, sex disparity and immunotherapy

Christopher Yogodzinski et al.Oct 24, 2023
+2
J
A
C
Abstract Advances in cancer biology are increasingly dependent on integration of heterogeneous datasets. Large scale efforts have systematically mapped many aspects of cancer cell biology; however, it remains challenging for individual scientists to effectively integrate and understand this data. We have developed a new data retrieval and indexing framework that allows us to integrate publicly available data from different sources and to combine publicly available data with new or bespoke datasets. Beyond a database search, our approach empowered testable hypotheses of new synthetic lethal gene pairs, genes associated with sex disparity, and immunotherapy targets in cancer. Our approach is straightforward to implement, well documented and is continuously updated which should enable individual users to take full advantage of efforts to map cancer cell biology.
1
Paper
Citation3
0
Save
0

The RNA demethylase FTO targets m6Am in snRNA to establish distinct methyl isoforms that influence splicing

Jan Mauer et al.May 6, 2020
+7
T
M
J
Summary Small nuclear RNAs (snRNAs) are core spliceosome components and mediate pre-mRNA splicing. During their biogenesis, snRNAs acquire several constitutive nucleotide modifications. Here we show that snRNAs also contain a regulated and reversible nucleotide modification causing them to exist as two different methyl isoforms, m 1 and m 2 , reflecting the methylation state of the adenosine adjacent to the snRNA cap. We find that snRNA biogenesis involves the formation of an initial m 1 -isoform with a single-methylated adenosine (2’- O -methyladenosine, Am), which is then converted to a dimethylated m 2 -isoform ( N 6 ,2’- O -dimethyladenosine, m 6 Am). The relative m 1 - and m 2 -isoform levels are determined by the RNA demethylase FTO, which selectively demethylates the m 2 -isoform. We show FTO is inhibited by endogenous metabolites, resulting in increased m 2 -snRNA levels. Furthermore, cells that exhibit high m 2 -snRNA levels show altered patterns of alternative splicing. Together, these data reveal that FTO has a central role in snRNA biogenesis and controls a previously unknown step of snRNA processing involving reversible methylation, thereby providing a potential link between reversible RNA modifications and mRNA splicing.
26

Inhibition of muscarinic receptor signaling protects human enteric inhibitory neurons against platin chemotherapy toxicity

Mikayla Richter et al.Oct 24, 2023
+24
R
S
M
Abstract GI toxicity is a common dose-limiting adverse effect of platin chemotherapy treatment. Up to 50% of cancer survivors continue to experience symptoms of chronic constipation or diarrhea induced by their chemotherapy for many years after their treatment. This drug toxicity is largely attributed to damage to enteric neurons that innervate the GI tract and control GI motility. The mechanisms responsible for platin-induced enteric neurotoxicity and potential preventative strategies have remained unknown. Here, we use human pluripotent stem cell derived enteric neurons to establish a new model system capable of uncovering the mechanism of platin-induced enteric neuropathy. Utilizing this scalable system, we performed a high throughput screen and identified drug candidates and pathways involved in the disease. Our analyses revealed that excitotoxicity through muscarinic cholinergic signaling is a key driver of platin-induced enteric neuropathy. Using single nuclei transcriptomics and functional assays, we discovered that this disease mechanism leads to increased susceptibility of specific neuronal subtypes, including inhibitory nitrergic neurons, to platins. Histological assessment of the enteric nervous system in platin-treated patients confirmed the selective loss of nitrergic neurons. Finally, we demonstrated that pharmacological and genetic inhibition of muscarinic cholinergic signaling is sufficient to rescue enteric neurons from platin excitotoxicity in vitro and can prevent platin-induced constipation and degeneration of nitrergic neurons in mice. These studies define the mechanisms of platin-induced enteric neuropathy and serve as a framework for uncovering cell type-specific manifestations of cellular stress underlying numerous intractable peripheral neuropathies.
Load More