LK
Lisa Kirkemo
Author with expertise in Immunobiology of Dendritic Cells
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
44
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
36

Trimeric SARS-CoV-2 Spike interacts with dimeric ACE2 with limited intra-Spike avidity

Irene Lui et al.May 21, 2020
Abstract A serious public health crisis is currently unfolding due to the SARS-CoV-2 pandemic. SARS-CoV-2 viral entry depends on an interaction between the receptor binding domain of the trimeric viral Spike protein (Spike-RBD) and the dimeric human angiotensin converting enzyme 2 (ACE2) receptor. While it is clear that strategies to block the Spike/ACE2 interaction are promising as anti-SARS-CoV-2 therapeutics, our current understanding is insufficient for the rational design of maximally effective therapeutic molecules. Here, we investigated the mechanism of Spike/ACE2 interaction by characterizing the binding affinity and kinetics of different multimeric forms of recombinant ACE2 and Spike-RBD domain. We also engineered ACE2 into a split Nanoluciferase-based reporter system to probe the conformational landscape of Spike-RBDs in the context of the Spike trimer. Interestingly, a dimeric form of ACE2, but not monomeric ACE2, binds with high affinity to Spike and blocks viral entry in pseudotyped virus and live SARS-CoV-2 virus neutralization assays. We show that dimeric ACE2 interacts with an RBD on Spike with limited intra-Spike avidity, which nonetheless contributes to the affinity of this interaction. Additionally, we demonstrate that a proportion of Spike can simultaneously interact with multiple ACE2 dimers, indicating that more than one RBD domain in a Spike trimer can adopt an ACE2-accessible “up” conformation. Our findings have significant implications on the design strategies of therapeutic molecules that block the Spike/ACE2 interaction. The constructs we describe are freely available to the research community as molecular tools to further our understanding of SARS-CoV-2 biology.
36
Citation43
0
Save
1

Cell-surface tethered promiscuous biotinylators enable small-scale surface proteomics of human exosomes

Lisa Kirkemo et al.Sep 22, 2021
Abstract Characterization of cell surface proteome differences between cancer and healthy cells is a valuable approach for the identification of novel diagnostic and therapeutic targets. However, selective sampling of surface proteins for proteomics requires large samples (>10e7 cells) and long labeling times. These limitations preclude analysis of material-limited biological samples or the capture of rapid surface proteomic changes. Here, we present two labeling approaches to tether exogenous peroxidases (APEX2 and HRP) directly to cells, enabling rapid, small-scale cell surface biotinylation without the need to engineer cells. We used a novel lipidated DNA-tethered APEX2 (DNA-APEX2), which upon addition to cells promoted cell agnostic membrane-proximal labeling. Alternatively, we employed horseradish peroxidase (HRP) fused to the glycan binding domain of wheat germ agglutinin (WGA-HRP). This approach yielded a rapid and commercially inexpensive means to directly label cells containing common N-Acetylglucosamine (GlcNAc) and sialic acid glycans on their surface. The facile WGA-HRP method permitted high surface coverage of cellular samples and enabled the first comparative surface proteome characterization of cells and cell-derived exosomes, leading to the robust quantification of 1,020 cell and exosome surface proteins. We identified a newly-recognized subset of exosome-enriched markers, as well as proteins that are uniquely upregulated on Myc oncogene-transformed prostate cancer exosomes. These two cell-tethered enzyme surface biotinylation approaches are highly advantageous for rapidly and directly labeling surface proteins across a range of material-limited sample types.
1
Citation1
0
Save
0

Broad and thematic remodeling of the surface glycoproteome on isogenic cells transformed with driving proliferative oncogenes

Kevin Leung et al.Oct 17, 2019
The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here we apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK and AKT. We find that each oncogene has somewhat different surfaceomes but the functions of these proteins are harmonized by common biological themes including up-regulation of nutrient transporters, down-regulation of adhesion molecules and tumor suppressing phosphatases, and alteration in immune modulators. Addition of a potent MEK inhibitor that blocks MAPK signaling brings each oncogene-induced surfaceome back to a common state reflecting their strong dependence on the MAPK pathway to propagate signaling. Using a recently developed glyco-proteomics method of activated ion electron transfer dissociation (AI-ETD) we found massive oncogene-induced changes in 142 N-linked glycans and differential increases in complex hybrid glycans especially for KRAS and HER2 oncogenes. Overall, these studies provide a broad systems level view of how specific driver oncogenes remodel the surface glycoproteome in a cell autologous fashion, and suggest possible surface targets, and combinations thereof, for drug and biomarker discovery.
0

Pharmacological complementation remedies an inborn error of lipid metabolism

Meredith Hartley et al.Nov 20, 2019
X-linked adrenoleukodystrophy (X-ALD) is a rare, genetic disease in which increased very long chain fatty acids (VLCFAs) in the central nervous system (CNS) cause demyelination and axonal degeneration, leading to severe neurological deficits. Sobetirome, a potent thyroid hormone agonist, has been shown to lower VLCFA levels in the periphery and CNS. In this study, two pharmacological strategies for enhancing the effects of thyromimetics were tested in Abcd1 KO mice, a murine model that has the same inborn error in metabolism as X-ALD patients. First, a sobetirome prodrug (Sob-AM2) with increased CNS penetration lowered CNS VLCFAs more potently than sobetirome, and was better tolerated with lower peripheral exposure, but was unable to unable to break the efficacy threshold of CNS VLCFA lowering in Abcd1 KO mice. Second, co-administration of thyroid hormone with sobetirome enhanced VLCFA lowering in the periphery compared to sobetirome alone but did not produce greater lowering in the CNS. These data suggest that the extent of CNS VLCFA lowering in Abcd1 KO mice is limited by a mechanistic threshold related to slow turnover kinetics, potentially related to the lack of frank X-ALD disease in this model. However, Sob-AM2 has improved potency at correcting the lipid abnormality associated with X-ALD in the CNS with better tolerance than the parent drug sobetirome.
1

Site-specific proximity labeling at single residue resolution for identification of protein partnersin vitroand on cells

Thomas Bartholow et al.Jul 27, 2023
The cell surface proteome, or surfaceome, is encoded by more than 4000 genes, but we are only beginning to understand the complexes they form. Rapid proximity labeling around specific membrane targets allows for capturing weak and transient interactions expected in the crowded and dynamic environment of the surfaceome. Recently, a high-resolution approach called μMap has been described (Geri, J. B., Oakley, J. V., Reyes-Robles, T., Wang, T., McCarver, S. J., White, C. H., Rodriguez-Rivera, F. P., Parker, D. L., Hett, E. C., Fadeyi, O. O., Oslund, R. C., and MacMillan, D. W. C. (2020) Science 367 , 1091-1097) in which an iridium (Ir)-based photocatalyst is attached to a specific antibody to target labeling of neighbors utilizing light-activated generation of carbenes from diazirine compounds via Dexter Energy Transfer (DET). Here we studied and optimized the spatial resolution for the method using an oncoprotein complex between the antibody drug, trastuzumab (Traz), and its target HER2. A set of eight single site-specific Ir-catalytic centers were engineered into Traz to study intra- and inter-molecular labeling in vitro and on cells by mass spectrometry. From this structurally well-characterized complex we observed a maximum distance of ∼110 Å for labeling. Labeling occurred almost uniformly over the full range of amino acids, unlike the residue specific labeling of other techniques. To examine on cell labeling that is specific to HER2 as opposed to simply being on the membrane, we compared the labeling patterns for the eight Traz-catalyst species to random labeling of membrane proteins using a metabolically integrated fatty acid catalyst. Our results identified 20 high confidence HER2 neighbors, many novel, that were more than 6-fold enriched compared to the non-specific membrane tethered catalyst. These studies define distance labeling parameters from single-site catalysts placed directly on the membrane target of interest, and more accurately compare to non-specific labeling to identify membrane complexes with higher confidence.
1

Secreted HLA Fc-Fusion Profiles Immunopeptidome in Hypoxic PDAC and Cellular Senescence

Nicholas Rettko et al.Apr 12, 2023
ABSTRACT Human leukocyte antigens (HLA) display peptides largely from intracellular proteins on the surface of cells in major histocompatibility complex (MHC)-peptide complexes. These complexes provide a biological window into the cell, and peptides derived from disease-associated antigens can serve as biomarkers and therapeutic targets. Thus, proper identification of peptides and the corresponding presenting HLA allele in disease phenotypes is important for the design and execution of therapeutic strategies using engineered T-cell receptors or antibodies. Yet, current mass spectrometry methods for profiling the immunopeptidome typically require large and complex sample inputs, complicating the study of several disease phenotypes and lowering the confidence of both peptide and allele identification. Here, we describe a novel secreted HLA (sHLA) Fc-fusion construct that allows for simple peptide identification from single HLA alleles in two important disease models: hypoxic pancreatic ductal adenocarcinoma (PDAC) and cellular senescence. We identify hypoxia and senescence-associated peptides that could act as future targets for immunotherapy. More generally, the method streamlines the time between sample preparation and injection from days to hours, yielding allele-restricted target identification in a temporally controlled manner. Overall, this method identified >30,000 unique HLA-associated peptides across two different HLA alleles and seven cell lines. Notably, ∼9,300 of these unique HLA-associated peptides had previously not been identified in the Immune Epitope Database. We believe the sHLA Fc-fusion capture technology will accelerate the study of the immunopeptidome as therapeutic interest in HLA-peptide complexes increases in cancer and beyond.
Load More