NL
Nir London
Author with expertise in Computational Methods in Drug Discovery
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(81% Open Access)
Cited by:
2,682
h-index:
39
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sub-angstrom modeling of complexes between flexible peptides and globular proteins

Barak Raveh et al.Mar 18, 2010
Proteins: Structure, Function, and BioinformaticsVolume 78, Issue 9 p. 2029-2040 Research Article Sub-angstrom modeling of complexes between flexible peptides and globular proteins Barak Raveh, Barak Raveh Department of Microbiology and Molecular Genetics, Insitute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 Israel The Blavatnik School of Computer Science, Tel-Aviv University, Ramat Aviv, 69978 Israel Barak Raveh and Nir London contributed equally to this work.Search for more papers by this authorNir London, Nir London Department of Microbiology and Molecular Genetics, Insitute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 Israel Barak Raveh and Nir London contributed equally to this work.Search for more papers by this authorOra Schueler-Furman, Corresponding Author Ora Schueler-Furman [email protected] Department of Microbiology and Molecular Genetics, Insitute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 IsraelDepartment of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, POB 12272, Jerusalem 91120 Israel===Search for more papers by this author Barak Raveh, Barak Raveh Department of Microbiology and Molecular Genetics, Insitute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 Israel The Blavatnik School of Computer Science, Tel-Aviv University, Ramat Aviv, 69978 Israel Barak Raveh and Nir London contributed equally to this work.Search for more papers by this authorNir London, Nir London Department of Microbiology and Molecular Genetics, Insitute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 Israel Barak Raveh and Nir London contributed equally to this work.Search for more papers by this authorOra Schueler-Furman, Corresponding Author Ora Schueler-Furman [email protected] Department of Microbiology and Molecular Genetics, Insitute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, 91120 IsraelDepartment of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, POB 12272, Jerusalem 91120 Israel===Search for more papers by this author First published: 18 March 2010 https://doi.org/10.1002/prot.22716Citations: 314 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract A wide range of regulatory processes in the cell are mediated by flexible peptides that fold upon binding to globular proteins. Computational efforts to model these interactions are hindered by the large number of rotatable bonds in flexible peptides relative to typical ligand molecules, and the fact that different peptides assume different backbone conformations within the same binding site. In this study, we present Rosetta FlexPepDock, a novel tool for refining coarse peptide–protein models that allows significant changes in both peptide backbone and side chains. We obtain high resolution models, often of sub-angstrom backbone quality, over an extensive and general benchmark that is based on a large nonredundant dataset of 89 peptide–protein interactions. Importantly, side chains of known binding motifs are modeled particularly well, typically with atomic accuracy. In addition, our protocol has improved modeling quality for the important application of cross docking to PDZ domains. We anticipate that the ability to create high resolution models for a wide range of peptide–protein complexes will have significant impact on structure-based functional characterization, controlled manipulation of peptide interactions, and on peptide-based drug design. Proteins 2010. © 2010 Wiley-Liss, Inc. Supporting Information Additional Supporting Information may be found in the online version of this article. Filename Description PROT_22716_sm_SuppFigures.pdf330.6 KB Supporting Information Figures. PROT_22716_sm_SuppTable1.pdf154.6 KB Supporting Information Table 1. PROT_22716_sm_SuppTable2.pdf244.3 KB Supporting Information Table 2. PROT_22716_sm_SuppTable3.pdf393.4 KB Supporting Information Table 3. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. REFERENCES 1 Pawson T,Nash P. Assembly of cell regulatory systems through protein interaction domains. Science 2003; 300: 445–452. 10.1126/science.1083653 CASPubMedWeb of Science®Google Scholar 2 Petsalaki E,Russell RB. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 2008; 19: 344–350. 10.1016/j.copbio.2008.06.004 CASPubMedWeb of Science®Google Scholar 3 Dyson HJ,Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005; 6: 197–208. 10.1038/nrm1589 CASPubMedWeb of Science®Google Scholar 4 Dyson HJ,Wright PE. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 2002; 12: 54–60. 10.1016/S0959-440X(02)00289-0 CASPubMedWeb of Science®Google Scholar 5 Vacic V,Oldfield CJ,Mohan A,Radivojac P,Cortese MS,Uversky VN,Dunker AK. Characterization of molecular recognition features. Mo RFs, and their binding partners. J Proteome Res 2007; 6: 2351–2366. 10.1021/pr0701411 CASPubMedWeb of Science®Google Scholar 6 Fuxreiter M,Tompa P,Simon I. Local structural disorder imparts plasticity on linear motifs. Bioinformatics 2007; 23: 950–956. 10.1093/bioinformatics/btm035 CASPubMedWeb of Science®Google Scholar 7 Naider F,Anglister J. Peptides in the treatment of AIDS. Curr Opin Struct Biol 2009; 19: 473–482. 10.1016/j.sbi.2009.07.003 CASPubMedWeb of Science®Google Scholar 8 Hayouka Z,Rosenbluh J,Levin A,Loya S,Lebendiker M,Veprintsev D,Kotler M,Hizi A,Loyter A,Friedler A. Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc Natl Acad Sci USA 2007; 104: 8316–8321. 10.1073/pnas.0700781104 CASPubMedWeb of Science®Google Scholar 9 Monfregola L,Vitale RM,Amodeo P,De Luca S. A SPR strategy for high-throughput ligand screenings based on synthetic peptides mimicking a selected subdomain of the target protein: a proof of concept on HER2 receptor. Bioorg Med Chem 2009; 17: 7015–7020. 10.1016/j.bmc.2009.08.004 CASPubMedWeb of Science®Google Scholar 10 Rubinstein M,Niv MY. Peptidic modulators of protein–protein interactions: progress and challenges in computational design. Biopolymers 2009; 91: 505–513. 10.1002/bip.21164 CASPubMedWeb of Science®Google Scholar 11 Parthasarathi L,Casey F,Stein A,Aloy P,Shields DC. Approved drug mimics of short peptide ligands from protein interaction motifs. J Chem Inf Model 2008; 48: 1943–1948. 10.1021/ci800174c CASPubMedWeb of Science®Google Scholar 12 Grigoryan G,Reinke AW,Keating AE. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 2009; 458: 859–864. 10.1038/nature07885 CASPubMedWeb of Science®Google Scholar 13 Simon RJ,Kania RS,Zuckermann RN,Huebner VD,Jewell DA,Banville S,Ng S,Wang L,Rosenberg S,Marlowe CK,Spellmeyer DC,Tans R,Frankel AD,Santi DV,Cohen FE,Bartlett PA. Peptoids: a modular approach to drug discovery. Proc Natl Acad Sci USA 1992; 89: 9367–9371. 10.1073/pnas.89.20.9367 CASPubMedWeb of Science®Google Scholar 14 Sillerud LO,Larson RS. Design and structure of peptide and peptidomimetic antagonists of protein–protein interaction. Curr Protein Pept Sci 2005; 6: 151–169. 10.2174/1389203053545462 CASPubMedWeb of Science®Google Scholar 15 Eichler J. Peptides as protein binding site mimetics. Curr Opin Chem Biol 2008; 12: 707–713. 10.1016/j.cbpa.2008.09.023 CASPubMedWeb of Science®Google Scholar 16 Zhang Y. Protein structure prediction: when is it useful? Curr Opin Struct Biol 2009; 19: 145–155. 10.1016/j.sbi.2009.02.005 CASPubMedWeb of Science®Google Scholar 17 Vajda S,Kozakov D. Convergence and combination of methods in protein-protein docking. Curr Opin Struct Biol 2009; 19: 164–170. 10.1016/j.sbi.2009.02.008 CASPubMedWeb of Science®Google Scholar 18 Cesareni G,Panni S,Nardelli G,Castagnoli L. Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Lett 2002; 513: 38–44. 10.1016/S0014-5793(01)03307-5 CASPubMedWeb of Science®Google Scholar 19 Niv MY,Weinstein H. A flexible docking procedure for the exploration of peptide binding selectivity to known structures and homology models of PDZ domains. J Am Chem Soc 2005; 127: 14072–14079. 10.1021/ja054195s CASPubMedWeb of Science®Google Scholar 20 Bordner AJ,Abagyan R. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins 2006; 63: 512–526. 10.1002/prot.20831 CASPubMedWeb of Science®Google Scholar 21 Sudol M. Structure and function of the WW domain. Prog Biophys Mol Biol 1996; 65: 113–132,1996. 10.1016/S0079-6107(96)00008-9 CASPubMedWeb of Science®Google Scholar 22 Songyang Z,Fanning AS,Fu C,Xu J,Marfatia SM,Chishti AH,Crompton A,Chan AC,Anderson JM,Cantley LC. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997; 275: 73–77. 10.1126/science.275.5296.73 CASPubMedWeb of Science®Google Scholar 23 Madden DR,Gorga JC,Strominger JL,Wiley DC. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC. Cell 1992; 70: 1035–1048. 10.1016/0092-8674(92)90252-8 CASPubMedWeb of Science®Google Scholar 24 Mandell JG,Falick AM,Komives EA. Identification of protein-protein interfaces by decreased amide proton solvent accessibility. Proc Natl Acad Sci USA 1998; 95: 14705–14710. 10.1073/pnas.95.25.14705 CASPubMedWeb of Science®Google Scholar 25 Morrison KL,Weiss GA. Combinatorial alanine-scanning. Curr Opin Chem Biol 2001; 5: 302–307. 10.1016/S1367-5931(00)00206-4 CASPubMedWeb of Science®Google Scholar 26 Petsalaki E,Stark A,Garcia-Urdiales E,Russell RB. Accurate prediction of peptide binding sites on protein surfaces. PLoS Comput Biol 2009; 5: e1000335. 10.1371/journal.pcbi.1000335 CASPubMedWeb of Science®Google Scholar 27 Brenke R,Kozakov D,Chuang GY,Beglov D,Hall D,Landon MR,Mattos C,Vajda S. Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 2009; 25: 621–627. 10.1093/bioinformatics/btp036 CASPubMedWeb of Science®Google Scholar 28 Capra JA,Laskowski RA,Thornton JM,Singh M,Funkhouser TA. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 2009; 5: e1000585. 10.1371/journal.pcbi.1000585 CASPubMedWeb of Science®Google Scholar 29 Hu X,Lee MS,Wallqvist A. Interaction of the disordered Yersinia effector protein YopE with its cognate chaperone SycE. Biochemistry 2009; 48: 11158–11160. 10.1021/bi9017347 CASPubMedWeb of Science®Google Scholar 30 Sousa SF,Fernandes PA,Ramos MJ. Protein-ligand docking: current status and future challenges. Proteins 2006; 65: 15–26. 10.1002/prot.21082 CASPubMedWeb of Science®Google Scholar 31 Arun Prasad P,Gautham N. A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling. J Comput Aided Mol Des 2008; 22: 815–829. 10.1007/s10822-008-9216-5 CASPubMedWeb of Science®Google Scholar 32 Hetenyi C,van der Spoel D. Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 2002; 11: 1729–1737. 10.1110/ps.0202302 CASPubMedWeb of Science®Google Scholar 33 Tong JC,Tan TW,Ranganathan S. Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci 2004; 13: 2523–2532. 10.1110/ps.04631204 CASPubMedWeb of Science®Google Scholar 34 Fagerberg T,Cerottini JC,Michielin O. Structural prediction of peptides bound to MHC class I. J Mol Biol 2006; 356: 521–546. 10.1016/j.jmb.2005.11.059 CASPubMedWeb of Science®Google Scholar 35 Staneva I,Wallin S. All-Atom Monte Carlo Approach to Protein-Peptide Binding. J Mol Biol 2009; 393: 1118–1128. 10.1016/j.jmb.2009.08.063 CASPubMedWeb of Science®Google Scholar 36 Fernandez-Ballester G,Beltrao P,Gonzalez JM,Song YH,Wilmanns M,Valencia A,Serrano L. Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions. J Mol Biol 2009; 388: 902–916. 10.1016/j.jmb.2009.03.038 CASPubMedWeb of Science®Google Scholar 37 Chaudhury S,Gray JJ. Identification of structural mechanisms of HIV-1 protease specificity using computational peptide docking: implications for drug resistance. Structure 2009; 17: 1636–1648. 10.1016/j.str.2009.10.008 CASPubMedWeb of Science®Google Scholar 38 Liu Z,Dominy BN,Shakhnovich EI. Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential. J Am Chem Soc 2004; 126: 8515–8528. 10.1021/ja032018q CASPubMedWeb of Science®Google Scholar 39 Antes I. DynaDock: A new molecular dynamics-based algorithm for protein—peptide docking including receptor flexibility. Proteins 2010; 78: 1084–1104. 10.1002/prot.22629 CASPubMedWeb of Science®Google Scholar 40 Das R,Baker D. Macromolecular modeling with rosetta. Annu Rev Biochem 2008; 77: 363–382. 10.1146/annurev.biochem.77.062906.171838 CASPubMedWeb of Science®Google Scholar 41 Li Z,Scheraga HA. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 1987; 84: 6611–6615. 10.1073/pnas.84.19.6611 CASPubMedWeb of Science®Google Scholar 42 Neduva V,Linding R,Su-Angrand I,Stark A,de Masi F,Gibson TJ,Lewis J,Serrano L,Russell RB. Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol 2005; 3: e405. 10.1371/journal.pbio.0030405 CASPubMedWeb of Science®Google Scholar 43 Puntervoll P,Linding R,Gemund C,Chabanis-Davidson S,Mattingsdal M,Cameron S,Martin DM,Ausiello G,Brannetti B,Costantini A,Ferre F,Maselli V,Via A,Cesareni G,Diella F,Superti-Furga G,Wyrwicz L,Ramu C,McGuigan C,Gudavalli R,Letunic I,Bork P,Rychlewski L,Kuster B,Helmer-Citterich M,Hunter WN,Aasland R,Gibson TJ. ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 2003; 31: 3625–3630. 10.1093/nar/gkg545 CASPubMedWeb of Science®Google Scholar 44 Stein A,Pache RA,Bernado P,Pons M,Aloy P. Dynamic interactions of proteins in complex networks: a more structured view. FEBS J 2009; 276: 5390–5405. 10.1111/j.1742-4658.2009.07251.x CASPubMedWeb of Science®Google Scholar 45 Massova I,Kollman PA. Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 1999; 121: 8133–8143. 10.1021/ja990935j CASWeb of Science®Google Scholar 46 Kortemme T,Kim DE,Baker D. Computational alanine scanning of protein–protein interfaces. Sci STKE 2004; 2004: l2. 10.1126/stke.2192004pl2 Google Scholar 47 Guerois R,Nielsen JE,Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002; 320: 369–387. 10.1016/S0022-2836(02)00442-4 CASPubMedWeb of Science®Google Scholar 48 London N,Movshovitz-Attias D,Schueler-Furman O. The structural basis of peptide–protein binding strategies. Structure 2009; 18: 188–199. 10.1016/j.str.2009.11.012 CASWeb of Science®Google Scholar 49 Greenfield N,Fasman GD. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969; 8: 4108–4116. 10.1021/bi00838a031 CASPubMedWeb of Science®Google Scholar 50 Smith CA,Kortemme T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 2008; 380: 742–756. 10.1016/j.jmb.2008.05.023 CASPubMedWeb of Science®Google Scholar 51 Canutescu AA,Dunbrack RL,Jr. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 2003; 12: 963–972. 10.1110/ps.0242703 CASPubMedWeb of Science®Google Scholar 52 Mandell DJ,Coutsias EA,Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 2009; 6: 551–552. 10.1038/nmeth0809-551 CASPubMedWeb of Science®Google Scholar 53 Vanhee P,Stricher F,Baeten L,Verschueren E,Lenaerts T,Serrano L,Rousseau F,Schymkowitz J. Protein–peptide interactions adopt the same structural motifs as monomeric protein folds. Structure 2009; 17: 1128–1136. 10.1016/j.str.2009.06.013 CASPubMedWeb of Science®Google Scholar 54 Henrich S,Salo-Ahen OM,Huang B,Rippmann FF,Cruciani G,Wade RC. Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 2009; 23: 209–219. Web of Science®Google Scholar 55 Dunbrack RL,Jr.,Cohen FE. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci 1997; 6: 1661–1681. 10.1002/pro.5560060807 CASPubMedWeb of Science®Google Scholar 56 Gray JJ,Moughon S,Wang C,Schueler-Furman O,Kuhlman B,Rohl CA,Baker D. Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 2003; 331: 281–299. 10.1016/S0022-2836(03)00670-3 CASPubMedWeb of Science®Google Scholar 57 Wang C,Schueler-Furman O,Baker D. Improved side-chain modeling for protein–protein docking. Protein Sci 2005; 14: 1328–1339. 10.1110/ps.041222905 CASPubMedWeb of Science®Google Scholar 58 Schueler-Furman O,Wang C,Baker D. Progress in protein–protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility. Proteins 2005; 60: 187–194. 10.1002/prot.20556 CASPubMedWeb of Science®Google Scholar 59 Davidon WC. Variable metric method for minimization. SIAM Journal on Optim 1991; 1: 1–17. 10.1137/0801001 Web of Science®Google Scholar 60 Kuhlman B,Baker D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA 2000; 97: 10383–10388. 10.1073/pnas.97.19.10383 CASPubMedWeb of Science®Google Scholar 61 Rohl CA,Strauss CE,Misura KM,Baker D. Protein structure prediction using Rosetta. Methods Enzymol 2004; 383: 66–93. 10.1016/S0076-6879(04)83004-0 CASPubMedWeb of Science®Google Scholar 62 Frishman D,Argos P. Knowledge-based protein secondary structure assignment. Proteins 1995; 23: 566–579. 10.1002/prot.340230412 CASPubMedWeb of Science®Google Scholar 63 Kontoyianni M,McClellan LM,Sokol GS. Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 2004; 47: 558–565. 10.1021/jm0302997 CASPubMedWeb of Science®Google Scholar 64 Siew N,Elofsson A,Rychlewski L,Fischer D. MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 2000; 16: 776–785. 10.1093/bioinformatics/16.9.776 CASPubMedWeb of Science®Google Scholar Citing Literature Volume78, Issue9July 2010Pages 2029-2040 ReferencesRelatedInformation
0

Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions

Nir London et al.May 27, 2011
Peptide–protein interactions are among the most prevalent and important interactions in the cell, but a large fraction of those interactions lack detailed structural characterization. The Rosetta FlexPepDock web server ( http://flexpepdock.furmanlab.cs.huji.ac.il/ ) provides an interface to a high-resolution peptide docking (refinement) protocol for the modeling of peptide–protein complexes, implemented within the Rosetta framework. Given a protein receptor structure and an approximate, possibly inaccurate model of the peptide within the receptor binding site, the FlexPepDock server refines the peptide to high resolution, allowing full flexibility to the peptide backbone and to all side chains. This protocol was extensively tested and benchmarked on a wide array of non-redundant peptide–protein complexes, and was proven effective when applied to peptide starting conformations within 5.5 Å backbone root mean square deviation from the native conformation. FlexPepDock has been applied to several systems that are mediated and regulated by peptide–protein interactions. This easy to use and general web server interface allows non-expert users to accurately model their specific peptide–protein interaction of interest.
0
Paper
Citation360
0
Save
0

Rosetta FlexPepDock ab-initio: Simultaneous Folding, Docking and Refinement of Peptides onto Their Receptors

Barak Raveh et al.Apr 29, 2011
Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions.
Load More