MA
Maansi Asthana
Author with expertise in Hackathons in Biomedical Engineering Education
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
55
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Iterative community-driven development of a SARS-CoV-2 tissue simulator

Michael Getz et al.Apr 5, 2020
+32
P
M
M
The 2019 novel coronavirus, SARS-CoV-2, is a pathogen of critical significance to international public health. Knowledge of the interplay between molecular-scale virus-receptor interactions, single-cell viral replication, intracellular-scale viral transport, and emergent tissue-scale viral propagation is limited. Moreover, little is known about immune system-virus-tissue interactions and how these can result in low-level (asymptomatic) infections in some cases and acute respiratory distress syndrome (ARDS) in others, particularly with respect to presentation in different age groups or pre-existing inflammatory risk factors. Given the nonlinear interactions within and among each of these processes, multiscale simulation models can shed light on the emergent dynamics that lead to divergent outcomes, identify actionable "choke points" for pharmacologic interventions, screen potential therapies, and identify potential biomarkers that differentiate patient outcomes. Given the complexity of the problem and the acute need for an actionable model to guide therapy discovery and optimization, we introduce and iteratively refine a prototype of a multiscale model of SARS-CoV-2 dynamics in lung tissue. The first prototype model was built and shared internationally as open source code and an online interactive model in under 12 hours, and community domain expertise is driving regular refinements. In a sustained community effort, this consortium is integrating data and expertise across virology, immunology, mathematical biology, quantitative systems physiology, cloud and high performance computing, and other domains to accelerate our response to this critical threat to international health. More broadly, this effort is creating a reusable, modular framework for studying viral replication and immune response in tissues, which can also potentially be adapted to related problems in immunology and immunotherapy.
0
Citation55
0
Save
1

Attentive deep learning-based tumor-only somatic mutation classifier achieves high accuracy agnostic of tissue type and capture kit

Robert McLaughlin et al.Dec 9, 2021
+3
M
M
R
Abstract In precision oncology, reliable identification of tumor-specific DNA mutations requires sequencing tumor DNA and non-tumor DNA (so-called “matched normal”) from the same patient. The normal sample allows researchers to distinguish acquired (somatic) and hereditary (germline) variants. The ability to distinguish somatic and germline variants facilitates estimation of tumor mutation burden (TMB), which is a recently FDA-approved pan-cancer marker for highly successful cancer immunotherapies; in tumor-only variant calling (i.e., without a matched normal), the difficulty in discriminating germline and somatic variants results in inflated and unreliable TMB estimates. We apply machine learning to the task of somatic vs germline classification in tumor-only samples using TabNet, a recently developed attentive deep learning model for tabular data that has achieved state of the art performance in multiple classification tasks (Arik and Pfister 2019). We constructed a training set for supervised classification using features derived from tumor-only variant calling and drawing somatic and germline truth-labels from an independent pipeline incorporating the patient-matched normal samples. Our trained model achieved state-of-the-art performance on two hold-out test datasets: a TCGA dataset including sarcoma, breast adenocarcinoma, and endometrial carcinoma samples (F1-score: 88.3), and a metastatic melanoma dataset, (F1-score 79.8). Concordance between matched-normal and tumor-only TMB improves from R 2 = 0.006 to 0.705 with the addition of our classifier. And importantly, this approach generalizes across tumor tissue types and capture kits and has a call rate of 100%. The interpretable feature masks of the attentive deep learning model explain the reasons for misclassified variants. We reproduce the recent finding that tumor-only TMB estimates for Black patients are extremely inflated relative to that of White patients due to the racial biases of germline databases. We show that our machine learning approach appreciably reduces this racial bias in tumor-only variant-calling.