YY
Yating Yang
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1,440
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2

Xiangyang Chi et al.Jun 22, 2020
+21
J
R
X
Hitting SARS-CoV-2 in a new spot A key target for therapeutic antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the spike protein, a trimeric protein complex with each monomer comprising an S1 and an S2 domain that mediate binding to host cells and membrane fusion, respectively. In addition to the receptor binding domain (RBD), S1 has an N-terminal domain (NTD). In searching for neutralizing antibodies, there has been a focus on the RBD. Chi et al. isolated antibodies from 10 convalescent patients and identified an antibody that potently neutralizes the virus but does not bind the RBD. Cryo–electron microscopy revealed the epitope as the NTD. This NTD-targeting antibody may be useful to combine with RBD-targeting antibodies in therapeutic cocktails. Science , this issue p. 650
33

A potent neutralizing human antibody reveals the N-terminal domain of the Spike protein of SARS-CoV-2 as a site of vulnerability

Xiangyang Chi et al.May 8, 2020
+23
J
R
X
Abstract The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a global public health threat. Most research on therapeutics against SARS-CoV-2 focused on the receptor binding domain (RBD) of the Spike (S) protein, whereas the vulnerable epitopes and functional mechanism of non-RBD regions are poorly understood. Here we isolated and characterized monoclonal antibodies (mAbs) derived from convalescent COVID-19 patients. An mAb targeting the N-terminal domain (NTD) of the SARS-CoV-2 S protein, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2, although it does not block the interaction between angiotensin-converting enzyme 2 (ACE2) receptor and S protein. The cryo-EM structure of the SARS-CoV-2 S protein in complex with 4A8 has been determined to an overall resolution of 3.1 Angstrom and local resolution of 3.4 Angstrom for the 4A8-NTD interface, revealing detailed interactions between the NTD and 4A8. Our functional and structural characterizations discover a new vulnerable epitope of the S protein and identify promising neutralizing mAbs as potential clinical therapy for COVID-19.
0

SARS-CoV-2 spike-induced syncytia are senescent and contribute to exacerbated heart failure

Huilong Li et al.Aug 5, 2024
+27
M
L
H
SARS-CoV-2 spike protein (SARS-2-S) induced cell–cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.
34

SARS-CoV-2 spike-induced syncytia are senescent and contribute to exacerbated heart failure

Luming Wan et al.Oct 11, 2022
+33
F
L
L
Abstract Patients with pre-existing heart failure are at a particularly high risk of morbidity and mortality resulting from SARS-CoV-2 infection. Direct acute cardiac injury or cytokine storms have been proposed to contribute to depressed cardiac function. However, the pathogenic mechanisms underlying the increased vulnerability to heart failure in SARS-CoV-2 infected patients are still largely unknown. Here, we found that the senescent outcome of SARS-CoV-2 spike protein (SARS-2-S)-induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without denovo synthesis of SARS-2-S. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNF α . We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by pseudovirus expressing SARS-2-S (SARS-2-Spp). Signs of senescent multinucleated cells are identified in ascending aorta from SARS-CoV-2 omicron variant-infected patient. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy. Significance Statement In this paper, we directly linked SARS-2-S-triggered syncytium formation with the ensuing induction of cellular senescence and its pathophysiological contribution to heart failure. We propose that both SARS-2-S expression and SARS-2-S protein internalization were sufficient to induce senescence in nonsenescent ACE2-expressing cells. This is important because of the persistent existence of SARS-2-S or extracellular vesicles containing SARS-2-S during the acute and post-acute stages of SARS-CoV-2 infection in human subjects. In searching for the underlying molecular mechanisms determining syncytial fate, the formation of functional MAVS aggregates dependent on RIG-I was observed at an early stage during fusion and regulated the anti-death to senescence fate of SARS-2-S syncytia through the TNFα-TNFR2 axis. We also found impaired cardiac metabolism in SARS-2-S syncytia induced by condensed WNK1. Importantly, SARS-2-Spp-exacerbated heart failure could be largely rescued by WNK1 inhibitor, anti-syncytial drug or senolytic agent. Together, we suggest that rescuing metabolism dysfunction in senescent SARS-2-S syncytia should be taken into consideration in individuals during the acute or post-acute stage of SARS-CoV-2 infection.