HD
Hong‐Wei Dong
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(71% Open Access)
Cited by:
9,641
h-index:
37
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic dissection of an amygdala microcircuit that gates conditioned fear

Wulf Haubensak et al.Nov 1, 2010
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ+ neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ− neurons in CEl. Electrical silencing of PKC-δ+ neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEloff units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing. The central amygdala, composed mainly of GABAergic inhibitory neurons, is the part of the brain that processes Pavlovian conditioned fear. Two groups reporting in this issue of Nature use different yet complementary experimental approaches to arrive at similar conclusions about the functional architecture that underlies the conditioned fear response. They find that two microcircuits are involved, one required for fear acquisition and the other for conditioned fear responses. Haubensak et al. use genetically based functional manipulations to identify a subpopulation of GABAergic neurons that has a key role in gating learned fear. Ciocchi et al. use a combination of in vivo electrophysiological, optogenetic and pharmacological approaches in mice to identify three functionally distinct types of neurons that are embedded in a highly organized local disinhibitory network. The central amygdala relies on inhibitory circuitry to encode fear memories, but how this information is acquired and expressed in these connections is unknown. Two new papers use a combination of cutting-edge technologies to reveal two distinct microcircuits within the central amygdala, one required for fear acquisition and the other critical for conditioned fear responses. Understanding this architecture provides a strong link between activity in a specific circuit and particular behavioural consequences.
0

Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain

Hong‐Wei Dong et al.Jun 29, 2001
The organization of axonal projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis (BST) was characterized with the Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing method in adult male rats. Within the BST, the oval nucleus (BSTov) projects very densely to the fusiform nucleus (BSTfu) and also innervates the caudal anterolateral area, anterodorsal area, rhomboid nucleus, and subcommissural zone. Outside the BST, its heaviest inputs are to the caudal substantia innominata and adjacent central amygdalar nucleus, retrorubral area, and lateral parabrachial nucleus. It generates moderate inputs to the caudal nucleus accumbens, parasubthalamic nucleus, and medial and ventrolateral divisions of the periaqueductal gray, and it sends a light input to the anterior parvicellular part of the hypothalamic paraventricular nucleus and nucleus of the solitary tract. The BSTfu displays a much more complex projection pattern. Within the BST, it densely innervates the anterodorsal area, dorsomedial nucleus, and caudal anterolateral area, and it moderately innervates the BSTov, subcommissural zone, and rhomboid nucleus. Outside the BST, the BSTfu provides dense inputs to the nucleus accumbens, caudal substantia innominata and central amygdalar nucleus, thalamic paraventricular nucleus, hypothalamic paraventricular and periventricular nuclei, hypothalamic dorsomedial nucleus, perifornical lateral hypothalamic area, and lateral tegmental nucleus. Moderately dense inputs are found in the parastrial, tuberal, dorsal raphé, and parabrachial nuclei and in the retrorubral area, ventrolateral division of the periaqueductal gray, and pontine central gray. Light projections end in the olfactory tubercle, lateral septal nucleus, posterior basolateral amygdalar nucleus, supramammillary nucleus, and nucleus of the solitary tract. These and other results suggest that the BSTov and BSTfu are basal telencephalic parts of a circuit that coordinates autonomic, neuroendocrine, and ingestive behavioral responses during stress.
0

The mouse cortico-striatal projectome

Houri Hintiryan et al.Jun 20, 2016
Hintiryan, Foster et al. present an online mouse cortico-striatal projectome describing projections from the entire cortex to dorsal striatum. Computational neuroanatomic analysis of these projections identified 29 distinct striatal domains. This connectomics approach was applied to characterize circuit-specific cortico-striatal connectopathies in a mouse model of Huntington disease and in monoamine oxidase (MAO) A/B knockout mice. Different cortical areas are organized into distinct intracortical subnetworks. The manner in which descending pathways from the entire cortex interact subcortically as a network remains unclear. We developed an open-access comprehensive mesoscale mouse cortico-striatal projectome: a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. On the basis of these projections, we used new computational neuroanatomical tools to identify 29 distinct functional striatal domains. Furthermore, we characterized different cortico-striatal networks and how they reconfigure across the rostral–caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility for characterizing circuitry-specific connectopathies. Together, our results provide the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders.
0
Paper
Citation488
0
Save
0

Lhx6 Delineates a Pathway Mediating Innate Reproductive Behaviors from the Amygdala to the Hypothalamus

Gloria Choi et al.May 1, 2005
In mammals, innate reproductive and defensive behaviors are mediated by anatomically segregated connections between the amygdala and hypothalamus. This anatomic segregation poses the problem of how the brain integrates activity in these circuits when faced with conflicting stimuli eliciting such mutually exclusive behaviors. Using genetically encoded and conventional axonal tracers, we have found that the transcription factor Lhx6 delineates the reproductive branch of this pathway. Other Lhx proteins mark neurons in amygdalar nuclei implicated in defense. We have traced parallel projections from the posterior medial amygdala, activated by reproductive or defensive olfactory stimuli, respectively, to a point of convergence in the ventromedial hypothalamus. The opposite neurotransmitter phenotypes of these convergent projections suggest a "gate control" mechanism for the inhibition of reproductive behaviors by threatening stimuli. Our data therefore identify a potential neural substrate for integrating the influences of conflicting behavioral cues and a transcription factor family that may contribute to the development of this substrate.
0
Citation449
0
Save
0

Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1

Hong‐Wei Dong et al.Jun 27, 2009
Functional heterogeneity has been investigated for decades in the hippocampal region of the mammalian cerebral cortex, and evidence for vaguely defined “dorsal” and “ventral” regions is emerging. Direct evidence that hippocampal field CA1 displays clear regional, laminar, and pyramidal neuron differentiation is presented here, based on a systematic high-resolution analysis of a publicly accessible, genome-wide expression digital library (Allen Brain Atlas) [Lein et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176]. First, genetic markers reveal distinct spatial expression domains and subdomains along the longitudinal (dorsal/septal/posterior to ventral/temporal/anterior) axis of field CA1. Second, genetic markers divide field CA1 pyramidal neurons into multiple subtypes with characteristic laminar distributions. And third, subcortical brain regions receiving axonal projections from molecularly distinct spatial domains of field CA1 display distinct global gene expression patterns, suggesting that field CA1 spatial domains may be genetically wired independently to form distinct functional networks related to cognition and emotion. Insights emerging from this genomic–anatomic approach provide a starting point for a detailed analysis of differential hippocampal structure–function organization.
0

Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH

Meng Zhang et al.Oct 6, 2021
Abstract A mammalian brain is composed of numerous cell types organized in an intricate manner to form functional neural circuits. Single-cell RNA sequencing allows systematic identification of cell types based on their gene expression profiles and has revealed many distinct cell populations in the brain 1,2 . Single-cell epigenomic profiling 3,4 further provides information on gene-regulatory signatures of different cell types. Understanding how different cell types contribute to brain function, however, requires knowledge of their spatial organization and connectivity, which is not preserved in sequencing-based methods that involve cell dissociation. Here we used a single-cell transcriptome-imaging method, multiplexed error-robust fluorescence in situ hybridization (MERFISH) 5 , to generate a molecularly defined and spatially resolved cell atlas of the mouse primary motor cortex. We profiled approximately 300,000 cells in the mouse primary motor cortex and its adjacent areas, identified 95 neuronal and non-neuronal cell clusters, and revealed a complex spatial map in which not only excitatory but also most inhibitory neuronal clusters adopted laminar organizations. Intratelencephalic neurons formed a largely continuous gradient along the cortical depth axis, in which the gene expression of individual cells correlated with their cortical depths. Furthermore, we integrated MERFISH with retrograde labelling to probe projection targets of neurons of the mouse primary motor cortex and found that their cortical projections formed a complex network in which individual neuronal clusters project to multiple target regions and individual target regions receive inputs from multiple neuronal clusters.
0
Citation286
0
Save
113

Cellular Anatomy of the Mouse Primary Motor Cortex

Rodrigo Muñoz-Castañeda et al.Oct 2, 2020
Abstract An essential step toward understanding brain function is to establish a cellular-resolution structural framework upon which multi-scale and multi-modal information spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, through a collaborative effort from the Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based description of one brain structure - the primary motor cortex upper limb area (MOp-ul) of the mouse. Applying state-of-the-art labeling, imaging, computational, and neuroinformatics tools, we delineated the MOp-ul within the Mouse Brain 3D Common Coordinate Framework (CCF). We defined over two dozen MOp-ul projection neuron (PN) types by their anterograde targets; the spatial distribution of their somata defines 11 cortical sublayers, a significant refinement of the classic notion of cortical laminar organization. We further combine multiple complementary tracing methods (classic tract tracing, cell type-based anterograde, retrograde, and transsynaptic viral tracing, high-throughput BARseq, and complete single cell reconstruction) to systematically chart cell type-based MOp input-output streams. As PNs link distant brain regions at synapses as well as host cellular gene expression, our construction of a PN type resolution MOp-ul wiring diagram will facilitate an integrated analysis of motor control circuitry across the molecular, cellular, and systems levels. This work further provides a roadmap towards a cellular resolution description of mammalian brain architecture.
113
Citation30
0
Save
Load More